Part Number Hot Search : 
1N476 MICRO FSF254R IT310 BD414 A1006 3Z5UU 00211
Product Description
Full Text Search
 

To Download M16C62 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 www..com
M16C/62 Group (M16C/62P, M16C/62PT)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
REJ03B0001-0210Z Rev.2.10 Nov. 07, 2003
1. Overview
The M16C/62 group (M16C/62P, M16C/62PT) of single-chip microcomputers are built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 80-pin, 100-pin and 128-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. In addition, this microcomputer contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.
1.1 Applications
Audio, cameras, office/communications/portable/industrial equipment, automobile, etc
Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.
Rev.2.10 Nov. 07, 2003 page 1
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
1.2 Performance Outline
Table 1.1 to table 1.3 list performance outline of M16C/62 group (M16C/62P, M16C/62PT).
Table 1.1 Performance outline of M16C/62 group (M16C/62P) (128-pin version) Item CPU Number of basic instructions Shortest instruction execution time Operation mode Memory space Memory capacity Port Multifunction timer Serial I/O Performance M16C/62P 91 instructions 41.7ns(f(BCLK)=24MHz, VCC1=3.0 to 5.5V) 100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V) Single-chip, memory expansion and microprocessor mode 1 Mbyte (Available to 4M bytes by memory space expansion function) See table 1.4 and 1.5 Product List Input/Output : 113 pins, Input : 1 pin Timer A : 16 bits x 5 channels, Timer B : 16 bits x 6 channels Three phase motor control circuit 3 channels Clock synchronous, UART, I2C bus (1), IEBus (2) 2 channels Clock synchronous 10-bit A-D converter: 1 circuit, 26 channels 8 bits x 2 channels 2 channels CCITT-CRC 15 bits x 1 channel (with prescaler) Internal: 29 sources, External: 8 sources, Software: 4 sources, Priority level: 7 levels 4 circuits Main clock generation circuit (*), Subclock generation circuit (*), Ring oscillator, PLL synthesizer (*)Equipped with a built-in feedback resistor. Stop detection of main clock oscillation, re-oscillation detection function Available (option (4)) VCC1=3.0 to 5.5V, VCC2=2.7V to VCC1 (f(BCLK)=24MHz) VCC1=2.7 to 5.5V, VCC2=2.7V to VCC1 (f(BCLK)=10MHz) 14 mA (VCC1=VCC2=5V, f(BCLK)=24MHz) 8 mA (VCC1=VCC2=3V, f(BCLK)=10MHz) 1.8 A (VCC1=VCC2=3V, f(XCIN)=32kHz, wait mode) 0.7 A (VCC1=VCC2=3V, stop mode) 3.3 0.3 V or 5.0 0.5 V 100 times (all area) or 1,000 times (user ROM area without block 1) / 10,000 times (block A, block 1) (3) -20 to 85oC -40 to 85oC (3) 128-pin plastic mold QFP
Peripheral function
A-D converter D-A converter DMAC CRC calculation circuit Watchdog timer Interrupt Clock generating circuit
Oscillation stop detection function Voltage detection circuit Supply voltage Power consumption
Electric characteristics
Flash memory Version
Program/erase supply voltage Program and erase endurance
Operating ambient temperature Package
NOTES: 1. I2C bus is a registered trademark of Koninklijke Philips Electronics N. V. 2. IEBus is a registered trademark of NEC Electronics Corporation. 3. See table 1.8 Product Code for the program and erase endurance, and operating ambient temperature. In addition 1,000 times/10,000 times are under development as of Oct., 2003. Please inquire about a release schedule. 4. All options are on request basis.
Rev.2.10 Nov. 07, 2003 page 2
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.2 Performance outline of M16C/62 group (M16C/62P, M16C/62PT) (100-pin version) Item M16C/62P CPU Performance
1. Overview
M16C/62PT(Note 4)
Number of basic instructions 91 instructions Shortest instruction execution time 41.7ns(f(BCLK)=24MHz, VCC1=3.0 to 5.5V) 41.7ns(f(BCLK)=24MHz, VCC1=4.0 to 5.5V) 100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V) Operation mode Single-chip, memory expansion and Single-chip mode microprocessor mode Memory space 1 Mbyte (Available to 4 Mbytes by 1M byte memory space expansion function) Memory capacity See table 1.4 to 1.7 Product List Port Input/Output : 87 pins, Input : 1pin Peripheral Multifunction timer Timer A : 16 bits x 5 channels, Timer B : 16 bits x 6 channels function Three phase motor control circuit Serial I/O 3 channels Clock synchronous, UART, I2C bus (1), IEBus (2) 2 channels Clock synchronous A-D converter 10-bit A-D converter: 1 circuit, 26 channels D-A converter 8 bits x 2 channels DMAC 2 channels CRC calculation circuit CCITT-CRC Watchdog timer 15 bits x 1 channel (with prescaler) Interrupt Internal: 29 sources, External: 8 sources, Software: 4 sources, Priority level: 7 levels Clock generating circuit 4 circuits Main clock generation circuit (*), Subclock generation circuit (*), Ring oscillator, PLL synthesizer (*)Equipped with a built-in feedback resistor. Oscillation stop detection function Stop detection of main clock oscillation, re-oscillation detection function Voltage detection circuit Available (option (5)) Absent VCC1=3.0 to 5.5V, VCC2=2.7V to VCC1 VCC1=VCC2=4.0V to 5.5 V Supply voltage Electric (f(BCLK)=24MHz) (f(BCLK)=24MHz) characterisVCC1=2.7 to 5.5V, VCC2=2.7V to VCC1 tics (f(BCLK)=10MHz) Power consumption 14 mA (VCC1=VCC2=5V, f(BCLK)=24MHz) 14 mA (VCC1=VCC2=5V, f(BCLK)=24MHz) 8 mA (VCC1=VCC2=3V, f(BCLK)=10MHz) 2.0 A (VCC1=VCC2=5V, 1.8 A (VCC1=VCC2=3V, f(XCIN)=32kHz, wait mode) f(XCIN)=32kHz, wait mode) 0.8 A (VCC1=VCC2=5V, stop mode) 0.7 A (VCC1=VCC2=3V, stop mode) 3.3 0.3 V or 5.0 0.5 V 5.0 0.5 V Flash memory Program/erase supply voltage Program and erase endurance 100 times (all area) Version or 1,000 times (user ROM area without block 1) / 10,000 times (block A, block 1) (3) Operating ambient temperature -20 to 85oC T version : -40 to 85oC oC (3) -40 to 85 V version : -40 to 125oC Package 100-pin plastic mold QFP, LQFP NOTES: 1. I2C bus is a registered trademark of Koninklijke Philips Electronics N. V. 2. IEBus is a registered trademark of NEC Electronics Corporation. 3. See table 1.8 Product Code for the program and erase endurance, and operating ambient temperature. In addition 1,000 times/10,000 times are under development as of Oct., 2003. Please inquire about a release schedule. 4. Use the high reliability version on VCC1 = VCC2. 5. All options are on request basis. Rev.2.10 Nov. 07, 2003 page 3 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.3 Performance outline of M16C/62 group (M16C/62P, M16C/62PT) (80-pin version) Item M16C/62P CPU Performance M16C/62PT
1. Overview
Number of basic instructions 91 instructions Shortest instruction execution time 41.7ns(f(BCLK)=24MHz, VCC1=3.0 to 5.5V) 41.7ns(f(BCLK)=24MHz, VCC1=4.0 to 5.5V) 100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V) Operation mode Single-chip mode Memory space 1M byte Memory capacity See table 1.4 to 1.7 Product List Peripheral Port Input/Output : 70 pins, Input : 1pin function Multifunction timer Timer A : 16 bits x 5 channels (Timer A1 and A2 are internal timer) Timer B : 16 bits x 6 channels (Timer B1 is internal timer) Serial I/O 2 channels Clock synchronous, UART, I2C bus(1), IEBus(2) 1 channel Clock synchronous, I2C bus(1), IEBus(2) 2 channels Clock synchronous (1 channel is only for transmission) A-D converter 10-bit A-D converter: 1 circuit, 26 channels D-A converter 8 bits x 2 channels DMAC 2 channels CRC calculation circuit CCITT-CRC Watchdog timer 15 bits x 1 channel (with prescaler) Interrupt Internal: 29 sources, External: 5 sources, Software: 4 sources, Priority level: 7 levels Clock generating circuit 4 circuits Main clock generation circuit (*), Subclock generation circuit (*), Ring oscillator, PLL synthesizer (*)Equipped with a built-in feedback resistor. Oscillation stop detection function Stop detection of main clock oscillation, re-oscillation detection function Voltage detection circuit Available (option (4)) Absent Electric VCC1=3.0 to 5.5V, (f(BCLK)=24MHz) VCC1=4.0 to 5.5V, (f(BCLK)=24MHz) Supply voltage characterisVCC1=2.7 to 5.5V, (f(BCLK)=10MHz) tics Power consumption 14 mA (VCC1=5V, f(BCLK)=24MHz) 14 mA (VCC1=5V, f(BCLK)=24MHz) 8 mA (VCC1=3V, f(BCLK)=10MHz) 2.0 A (VCC1=5V, 1.8 A (VCC1=3V, f(XCIN)=32kHz, wait mode) f(XCIN)=32kHz, wait mode) 0.8 A (VCC1=5V, stop mode) 0.7 A (VCC1=3V, stop mode) Flash Program/erase supply voltage 3.3 0.3 V or 5.0 0.5 V 5.0 0.5 V memory Program and erase endurance 100 times (all area) Version or 1,000 times (user ROM area without block 1) / 10,000 times (block A, block 1) (3) Operating ambient temperature -20 to 85oC T version : -40 to 85oC oC(option) -40 to 85 V version : -40 to 125oC Package 80-pin plastic mold QFP NOTES : 1. I2C bus is a registered trademark of Koninklijke Philips Electronics N. V. 2. IEBus is a registered trademark of NEC Electronics Corporation. 3. See table 1.8 Product Code for the program and erase endurance, and operating ambient temperature. In addition 1,000 times/10,000 times are under development as of Oct., 2003. Please inquire about a release schedule. 4. All options are on request basis.
Rev.2.10 Nov. 07, 2003 page 4
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
1.3 Block Diagram
Figure 1.1 is a block diagram of the M16C/62 group (M16C/62P, M16C/62PT) 128-pin and 100-pin version, figure 1.2 is a block diagram of the M16C/62 group (M16C/62P, M16C/62PT) 80-pin version.
8
8
8
8
8
8
8
Port P0
Port P1
Port P2 Port P3 ports>(4)
Port P4
Port P5
Port P6 (4)
Port P7
Internal peripheral functions
8
A-D converter
Timer (16-bit) Output (timer A): 5 Input (timer B): 6 Three-phase motor control circuit
(10 bits X 8 channels
Expandable up to 26 channels) UART or clock synchronous serial I/O
System clock generation circuit
XIN-XOUT XCIN-XCOUT PLL frequency synthesizer Ring oscillator Clock synchronous serial I/O
Port P8
7
(8 bits X 3 channels)
CRC arithmetic circuit (CCITT ) (Polynomial : X16+X12+X5+1)
(4)
Port P8_5
(8 bits X 2 channels)
M16C/60 series16-bit CPU core Watchdog timer
(15 bits)
R0H R1H R2 R3 A0 A1 FB R0L R1L SB USP ISP INTB PC FLG
Memory
ROM (1) RAM (2)
Port P9
8
DMAC
(2 channels)
Port P10
D-A converter
(8 bits X 2 channels)
8
Multiplier
(4) Port P11
(3)
(4) Port P12
(3)
Port P14
(3)
Port P13
(3)
8
2
8
8
NOTES : 1. ROM size depends on microcomputer type. 2. RAM size depends on microcomputer type. 3. Ports P11 to P14 exist only in 128-pin version. 4. Use M16C/62PT on VCC1= VCC2.
Figure 1.1 M16C/62 Group (M16C/62P, M16C/62PT) 128-pin and 100-pin version Block Diagram
Rev.2.10 Nov. 07, 2003 page 5
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
8
8
8
4
8
8
Port P0
Port P2
Port P3
(4)
Port P4
Port P5
Port P6
Port P7
4
Internal peripheral functions
Timer (16-bit) Output (timer A): 5 Input (timer B): 6 Three-phase motor control circuit
A-D converter
(10 bits X 8 channels
Expandable up to 26 channels)
UART or clock synchronous serial I/O (2 channels) UART (1 channel) (3)
System clock generation circuit
XIN-XOUT XCIN-XCOUT PLL frequency synthesizer Ring oscillator Clock synchronous serial I/O
Port P8 Port P8_5
7
CRC arithmetic circuit (CCITT ) (Polynomial : X16+X12+X5+1)
(8 bits X 2 channels)
(4)
Watchdog timer
(15 bits)
M16C/60 series16-bit CPU core
R0H R1H R2 R3 A0 A1 FB R0L R1L SB USP ISP INTB PC FLG
Memory
ROM (1) RAM (2)
Port P9
DMAC
(2 channels)
7
D-A converter
(8 bits X 2 channels)
Port P10
Multiplier
NOTES : 1. ROM size depends on microcomputer type. 2. RAM size depends on microcomputer type. 3. To use a UART2, set the CRD bit in the U2C0 register to "1" (CTS/RTS function disabled). 4. There is no external connections for port P1, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version. Set the direction bits in these ports to "1" (output mode), and set the output data to "0" ("L") using the program.
8
Figure 1.2 M16C/62 Group (M16C/62P, M16C/62PT) 80-pin version Block Diagram
Rev.2.10 Nov. 07, 2003 page 6
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
1.4 Product List
Tables 1.4 to 1.7 list the product list, figure 1.3 shows the type numbers, memory sizes and packages, table 1.8 lists the product code of flash memory version and external ROM version for M16C/62P. Figure 1.4 shows the marking diagram of flash memory version and external ROM version for M16C/62P. Please specify the mark of the mask ROM version at the time of ROM order. Please ask separately marking of the flash memory version of M16C/62PT. Table 1.4 Product List (1) (M16C/62P)
Type No. M30622M6P-XXXFP M30622M6P-XXXGP M30623M6P-XXXGP M30622M8P-XXXFP M30622M8P-XXXGP M30623M8P-XXXGP M30622MAP-XXXFP M30622MAP-XXXGP M30623MAP-XXXGP M30620MCP-XXXFP M30620MCP-XXXGP M30621MCP-XXXGP M30622MEP-XXXFP M30622MEP-XXXGP M30623MEP-XXXGP M30622MGP-XXXFP M30622MGP-XXXGP M30623MGP-XXXGP M30624MGP-XXXFP M30624MGP-XXXGP M30625MGP-XXXGP M30622MWP-XXXFP M30622MWP-XXXGP M30623MWP-XXXGP M30624MWP-XXXFP M30624MWP-XXXGP M30625MWP-XXXGP M30626MWP-XXXFP M30626MWP-XXXGP M30627MWP-XXXGP M30622MHP-XXXFP M30622MHP-XXXGP M30623MHP-XXXGP M30624MHP-XXXFP M30624MHP-XXXGP M30625MHP-XXXGP M30626MHP-XXXFP M30626MHP-XXXGP M30627MHP-XXXGP (D): Under development (P): Under planning 31K bytes 384K bytes 24K bytes 16K bytes 31K bytes 320K bytes 24K bytes (D) (D) (D) 16K bytes 20K bytes (D) (D) (D) 192K bytes (D) (D) (D) (D) 256K bytes 12K bytes 12K bytes 128K bytes 10K bytes (D) 96K bytes 5K bytes (D) (D) 48K bytes (D) (D) (D) 64K bytes (D) 4K bytes 4K bytes ROM capacity RAM capacity Package type 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 128P6Q-A MASK ROM version As of Nov. 2003 Remarks
Rev.2.10 Nov. 07, 2003 page 7
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
Table 1.5 Product List (2) (M16C/62P)
Type No. M30626MJP-XXXFP M30626MJP-XXXGP M30627MJP-XXXGP M30622F8PFP M30622F8PGP M30623F8PGP M30620FCPFP M30620FCPGP M30621FCPGP M30624FGPFP M30624FGPGP M30625FGPGP M30626FHPFP M30626FHPGP M30627FHPGP M30626FJPFP M30626FJPGP M30627FJPGP M30622SPFP M30622SPGP M30620SPFP M30620SPGP (D): Under development (P): Under planning (P) (P) 512K+4K bytes (P) (D) (D) (D) (D) 4K bytes 31K bytes 384K+4K bytes 31K bytes 256K+4K bytes 20K bytes (D) 128K+4K bytes 10K bytes (D) 64K+4K bytes 4K bytes (P) (P) 512K bytes (P) 31K bytes ROM capacity ROM capacity Package type 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 128P6Q-A 100P6S-A 100P6Q-A 100P6S-A 100P6Q-A
As of Nov. 2003 Remarks MASK ROM version
Flash memory version
External ROM version
10K bytes
Rev.2.10 Nov. 07, 2003 page 8
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
As of Nov. 2003 Package type 100P6S-A 4K bytes 100P6Q-A 80P6S-A 100P6S-A 4K bytes 100P6Q-A 80P6S-A 100P6S-A 5K bytes 100P6Q-A 80P6S-A 100P6S-A 10K bytes 100P6Q-A 80P6S-A 4K bytes 100P6Q-A 100P6S-A 100P6Q-A 80P6S-A 100P6S-A Flash memory version
T Version (High reliability 85 C Version)
Table 1.6 Product List (3) (T version (M16C/62PT))
Type No. M3062CM6T-XXXFP M3062CM6T-XXXGP M3062EM6T-XXXGP M3062CM8T-XXXFP M3062CM8T-XXXGP M3062EM8T-XXXGP M3062CMAT-XXXFP M3062CMAT-XXXGP M3062EMAT-XXXGP M3062AMCT-XXXFP M3062AMCT-XXXGP M3062BMCT-XXXGP M3062CF8TGP M3062AFCTFP M3062AFCTGP M3062BFCTGP M3062JFHTFP M3062JFHTGP (D): Under development (P): Under planning (D) (D) 48K bytes (P) (D) (D) 64K bytes (P) (D) (D) 96K bytes (P) (D) (D) 128K bytes (P) (D) 64K bytes (D) (D) 128K+4K bytes 10K bytes (P) (D) (D) 384K+4K bytes 31K bytes ROM capacity RAM capacity
Remarks
MASK ROM version
100P6Q-A
Table 1.7 Product List (4) (V version (M16C/62PT))
Type No. M3062CM6V-XXXFP M3062CM6V-XXXGP M3062EM6V-XXXGP M3062CM8V-XXXFP M3062CM8V-XXXGP M3062EM8V-XXXGP M3062CMAV-XXXFP M3062CMAV-XXXGP M3062EMAV-XXXGP M3062AMCV-XXXFP M3062AMCV-XXXGP M3062BMCV-XXXGP M3062AFCVFP M3062AFCVGP M3062BFCVGP M3062JFHVFP M3062JFHVGP (D): Under development (P): Under planning (P) (P) 48K bytes (P) (P) (P) 64K bytes (P) (P) (P) 96K bytes (P) (D) (D) 128K bytes (P) (D) (D) 128K+4K bytes (P) (P) (P) 384K+4K bytes 31K bytes 10K bytes 10K bytes 5K bytes 4K bytes 4K bytes ROM capacity RAM capacity Package type 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A 80P6S-A 100P6S-A 100P6Q-A Flash memory version MASK ROM version
As of Nov. 2003 Remarks
V Version (High reliability 125 C Version)
Rev.2.10 Nov. 07, 2003 page 9
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
Type No.
M3062 6 MH P- XXX FP
Package type: FP : Package GP : Package 100P6S-A 80P6Q-A, 100P6Q-A, 128P6Q-A
ROM No. Omitted for flash memory version and external ROM version Classification P : M16C/62P T : T version (M16C/62PT) V : V version (M16C/62PT) ROM capacity: 6: 48K bytes 8: 64K bytes A: 96K bytes C: 128K bytes E: 192K bytes
G: 256K bytes W: 320K bytes H: 384K bytes J: 512K bytes
Memory type: M: Mask ROM version F: Flash memory version S: External ROM version Shows RAM capacity, pin count, etc Numeric : M16C/62P Alphabet : M16C/62PT M16C/62 Group M16C Family
Figure 1.3 Type No., Memory Size, and Package
Rev.2.10 Nov. 07, 2003 page 10
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
Table 1.8 Product Code of Flash Memory version and External ROM version for M16C/62P
Internal ROM (user ROM area without block 1) product code D3 D5 D7 Flash memory version D9 U3 U5 U7 U9 D3 External ROM version D5 U3 U5 Lead-free Lead-included 100 Lead-free 1,000 10,000 100 100 Lead-included 1,000 0C to 60C 10,000 100 Package Program and erase endurance Internal ROM (block A, block 1) Temperature range 0C to 60C -40C to 85C -20C to 85C 0C to 60C -40C to 85C -20C to 85C Operating ambient temperature -40C to 85C -20C to 85C -40C to 85C -20C to 85C -40C to 85C -20C to 85C -40C to 85C -20C to 85C -40C to 85C -20C to 85C -40C to 85C -20C to 85C
Temperature Program and range erase endurance
M1 6 C M3 0 6 2 6 FHPF P B D5 XXXXXXX
Type No. (See Figure 1.3 Type No., Memory Size, and Package) Chip version and product code. B : Shows chip version. Henceforth, whenever it changes a version, it continues with B, C, and D. D5 : Shows Product code. (See table 1.8 Product Code.) Data code seven digits
The product without marking of chip version of the flash memory version and the ROM external version corresponds to the chip version "A".
Figure 1.4 Marking Diagram of Flash Memory version and External ROM version for M16C/62P (Top View)
Rev.2.10 Nov. 07, 2003 page 11
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
1.5 Pin Configuration
Figures 1.5 to 1.8 show the pin configurations (top view).
PIN CONFIGURATION (top view)
P1_0/D8 P0_7/AN0_7/D7 P0_6/AN0_6/D6 P0_5/AN0_5/D5 P0_4/AN0_4/D4 P0_3/AN0_3/D3 P0_2/AN0_2/D2 P0_1/AN0_1/D1 P0_0/AN0_0/D0 P11_7 P11_6 P11_5 P11_4 P11_3 P11_2 P11_1 P11_0 P10_7/AN7/KI3 P10_6/AN6/KI2 P10_5/AN5/KI1 P10_4/AN4/KI0 P10_3/AN3 P10_2/AN2 P10_1/AN1 AVSS P10_0/AN0
P1_1/D9 P1_2/D10 P1_3/D11 P1_4/D12 P1_5/D13/INT3 P1_6/D14/INT4 P1_7/D15/INT5 P2_0/AN2_0/A0(/D0/-) P2_1/AN2_1/A1(/D1/D0) P2_2/AN2_2/A2(/D2/D1) P2_3/AN2_3/A3(/D3/D2) P2_4/AN2_4/A4(/D4/D3) P2_5/AN2_5/A5(/D5/D4) P2_6/AN2_6/A6(/D6/D5) P2_7/AN2_7/A7(/D7/D6) VSS P3_0/A8(/-/D7) VCC2 P12_0 P12_1 P12_2 P12_3 P12_4 P3_1/A9 P3_2/A10 P3_3/A11 P3_4/A12 P3_5/A13 P3_6/A14 P3_7/A15 P4_0/A16 P4_1/A17 P4_2/A18 P4_3/A19 P4_4/CS0 P4_5/CS1 P4_6/CS2 P4_7/CS3
102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 1 23 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
M16C/62 Group (M16C/62P)
53 52 51 50 49 48 47 46 45 44 43 42 41 40 39
P12_5 P12_6 P12_7 P5_0/WRL/WR P5_1/WRH/BHE P5_2/RD P5_3/BCLK P13_0 P13_1 P13_2 P13_3 P5_4/HLDA P5_5/HOLD P5_6/ALE P5_7/RDY/CLKOUT P13_4 P13_5 P13_6 P13_7 P6_0/CTS0/RTS0 P6_1/CLK0 P6_2/RXD0/SCL0 P6_3/TXD0/SDA0 P6_4/CTS1/RTS1/CTS0/CLKS1 P6_5/CLK1 VSS
NOTES:
1. P7_0 and P7_1 are N channel open-drain output pins.
VREF AVCC P9_7/ADTRG/SIN4 P9_6/ANEX1/SOUT4 P9_5/ANEX0/CLK4 P9_4/DA1/TB4IN P9_3/DA0/TB3IN P9_2/TB2IN/SOUT3 P9_1/TB1IN/SIN3 P9_0/TB0IN/CLK3 P14_1 P14_0 BYTE CNVSS P8_7/XCIN P8_6/XCOUT RESET XOUT VSS XIN VCC1 P8_5/NMI P8_4/INT2/ZP P8_3/INT1 P8_2/INT0 P8_1/TA4IN/U P8_0/TA4OUT/U P7_7/TA3IN P7_6/TA3OUT P7_5/TA2IN/W P7_4/TA2OUT/W P7_3/CTS2/RTS2/TA1IN/V P7_2/CLK2/TA1OUT/V P7_1/RXD2/SCL2/TA0IN/TB5IN (1) P7_0/TXD2/SDA2/TA0OUT(1) P6_7/TXD1/SDA1 VCC1 P6_6/RXD1/SCL1
Package: 128P6Q-A
Figure 1.5 Pin Configuration (Top View)
Rev.2.10 Nov. 07, 2003 page 12
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
PIN CONFIGURATION (top view)
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
P1_0/D8 P1_1/D9 P1_2/D10 P1_3/D11 P1_4/D12 P1_5/D13/INT3 P1_6/D14/INT4 P1_7/D15/INT5 P2_0/AN2_0/A0(/D0/-) P2_1/AN2_1/A1(/D1/D0) P2_2/AN2_2/A2(/D2/D1) P2_3/AN2_3/A3(/D3/D2) P2_4/AN2_4/A4(/D4/D3) P2_5/AN2_5/A5(/D5/D4) P2_6/AN2_6/A6(/D6/D5) P2_7/AN2_7/A7(/D7/D6) VSS P3_0/A8(/-/D7) VCC2 P3_1/A9 P3_2/A10 P3_3/A11 P3_4/A12 P3_5/A13 P3_6/A14 P3_7/A15 P4_0/A16 P4_1/A17 P4_2/A18 P4_3/A19
P0_7/AN0_7/D7 P0_6/AN0_6/D6 P0_5/AN0_5/D5 P0_4/AN0_4/D4 P0_3/AN0_3/D3 P0_2/AN0_2/D2 P0_1/AN0_1/D1 P0_0/AN0_0/D0 P10_7/AN7/KI3 P10_6/AN6/KI2 P10_5/AN5/KI1 P10_4/AN4/KI0 P10_3/AN3 P10_2/AN2 P10_1/AN1 AVSS P10_0/AN0 VREF AVCC P9_7/ADTRG/SIN4
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1 23 45 6 7
M16C/62 Group (M16C/62P, M16C/62PT)
50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31
P4_4/CS0 P4_5/CS1 P4_6/CS2 P4_7/CS3 P5_0/WRL/WR P5_1/WRH/BHE P5_2/RD P5_3/BCLK P5_4/HLDA P5_5/HOLD P5_6/ALE P5_7/RDY/CLKOUT P6_0/CTS0/RTS0 P6_1/CLK0 P6_2/RXD0/SCL0 P6_3/TXD0/SDA0 P6_4/CTS1/RTS1/CTS0/CLKS1 P6_5/CLK1 P6_6/RXD1/SCL1 P6_7/TXD1/SDA1
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
P9_5/ANEX0/CLK4 P9_4/DA1/TB4IN P9_3/DA0/TB3IN P9_2/TB2IN/SOUT3 P9_1/TB1IN/SIN3 P9_0/TB0IN/CLK3 BYTE CNVSS P8_7/XCIN P8_6/XCOUT RESET XOUT VSS XIN VCC1 P8_5/NMI P8_4/INT2/ZP P8_3/INT1 P8_2/INT0 P8_1/TA4IN/U P8_0/TA4OUT/U P7_7/TA3IN P7_6/TA3OUT P7_5/TA2IN/W P7_4/TA2OUT/W P7_3/CTS2/RTS2/TA1IN/V P7_2/CLK2/TA1OUT/V P7_1/RXD2/SCL2/TA0IN/TB5IN(1) P7_0/TXD2/SDA2/TA0OUT(1)
P9_6/ANEX1/SOUT4
NOTES: 1. P7_0 and P7_1 are N channel open-drain output pins.
Package: 100P6S-A
Figure 1.6 Pin Configuration (Top View)
Rev.2.10 Nov. 07, 2003 page 13
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
PIN CONFIGURATION (top view)
P1_3/D11 P1_4/D12 P1_5/D13/INT3 P1_6/D14/INT4 P1_7/D15/INT5 P2_0/AN2_0/A0(/D0/-) P2_1/AN2_1/A1(/D1/D0) P2_2/AN2_2/A2(/D2/D1) P2_3/AN2_3/A3(/D3/D2) P2_4/AN2_4/A4(/D4/D3) P2_5/AN2_5/A5(/D5/D4) P2_6/AN2_6/A6(/D6/D5) P2_7/AN2_7/A7(/D7/D6) VSS P3_0/A8(/-/D7) VCC2 P3_1/A9 P3_2/A10 P3_3/A11 P3_4/A12 P3_5/A13 P3_6/A14 P3_7/A15 P4_0/A16 P4_1/A17
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
P1_2/D10 P1_1/D9 P1_0/D8 P0_7/AN0_7/D7 P0_6/AN0_6/D6 P0_5/AN0_5/D5 P0_4/AN0_4/D4 P0_3/AN0_3/D3 P0_2/AN0_2/D2 P0_1/AN0_1/D1 P0_0/AN0_0/D0 P10_7/AN7/KI3 P10_6/AN6/KI2 P10_5/AN5/KI1 P10_4/AN4/KI0 P10_3/AN3 P10_2/AN2 P10_1/AN1 AVSS P10_0/AN0 VREF AVCC P9_7/ADTRG/SIN4 P9_6/ANEX1/SOUT4 P9_5/ANEX0/CLK4
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1 23
M16C/62 Group (M16C/62P, M16C/62PT)
50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26
P4_2/A18 P4_3/A19 P4_4/CS0 P4_5/CS1 P4_6/CS2 P4_7/CS3 P5_0/WRL/WR P5_1/WRH/BHE P5_2/RD P5_3/BCLK P5_4/HLDA P5_5/HOLD P5_6/ALE P5_7/RDY/CLKOUT P6_0/CTS0/RTS0 P6_1/CLK0 P6_2/RXD0/SCL0 P6_3/TXD0/SDA0 P6_4/CTS1/RTS1/CTS0/CLKS1 P6_5/CLK1 P6_6/RXD1/SCL1 P6_7/TXD1/SDA1 P7_0/TXD2/SDA2/TA0OUT (1) P7_1/RXD2/SCL2/TA0IN/TB5IN (1) P7_2/CLK2/TA1OUT/V
45
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
RESET XOUT VSS XIN VCC1 P8_5/NMI P8_4/INT2/ZP P8_3/INT1 P8_2/INT0 P8_1/TA4IN/U P8_0/TA4OUT/U P7_7/TA3IN P7_6/TA3OUT P7_5/TA2IN/W P7_4/TA2OUT/W P7_3/CTS2/RTS2/TA1IN/V
P9_4/DA1/TB4IN P9_3/DA0/TB3IN P9_2/TB2IN/SOUT3 P9_1/TB1IN/SIN3 P9_0/TB0IN/CLK3 BYTE CNVSS P8_7/XCIN P8_6/XCOUT
NOTES: 1. P7_0 and P7_1 are N channel open-drain output pins.
Package: 100P6Q-A
Figure 1.7 Pin Configuration (Top View)
Rev.2.10 Nov. 07, 2003 page 14
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
PIN CONFIGURATION (top view)
P0_7/AN0_7
P2_2/AN2_2 P2_3/AN2_3
P2_4/AN2_4
P2_0/AN2_0 P2_1/AN2_1
P2_5/AN2_5 P2_6/AN2_6 P2_7/AN2_7
P3_0 P3_1 P3_2 P3_3
P3_7 P4_0 P4_1
P3_4
P3_5 P3_6
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
P4_2
40 39 38 37 36 35 34 33 32
P0_6/AN0_6 P0_5/AN0_5 P0_4/AN0_4 P0_3/AN0_3 P0_2/AN0_2 P0_1/AN0_1 P0_0/AN0_0 P10_7/AN7/KI3 P10_6/AN6/KI2 P10_5/AN5/KI1 P10_4/AN4/KI0 P10_3/AN3 P10_2/AN2 P10_1/AN1 AVSS P10_0/AN0 VREF AVCC P9_7/ADTRG/SIN4 P9_6/ANEX1/SOUT4
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P4_3 P5_0 P5_1 P5_2 P5_3 P5_4 P5_5 P5_6 P5_7/CLKOUT P6_0/CTS0/RTS0 P6_1/CLK0 P6_2/RXD0/SCL0 P6_3/TXD0/SDA0 P6_4/CTS1/RTS1/CTS0/CLKS1 P6_5/CLK1 P6_6/RXD1/SCL1 P6_7/TXD1/SDA1 P7_0/TXD2/SDA2/TA0OUT (1) P7_1/RXD2/SCL2/TA0IN/TB5IN (1) P7_6/TA3OUT
M16C/62 Group (M16C/62P, M16C/62PT)
31 30 29 28 27 26 25 24 23 22 21
P8_6/XCOUT
XIN VCC1 P8_5/NMI
P9_5/ANEX0/CLK4 P9_4/DA1/TB4IN P9_3/DA0/TB3IN P9_2/TB2IN/SOUT3
P8_4/INT2/ZP P8_3/INT1 P8_2/INT0 P8_1/TA4IN
P9_0/TB0IN/CLK3 CNVSS(BYTE) P8_7/XCIN
P8_0/TA4OUT
P7_7/TA3IN
RESET XOUT
VSS
NOTES: 1. P7_0 and P7_1 are N channel open-drain output pins.
Package: 80P6S-A
Figure 1.8 Pin Configuration (Top View)
Rev.2.10 Nov. 07, 2003 page 15
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
1.6 Pin Description
Table 1.9 Pin Description (100-pin and 128-pin Version) (1)
Signal name Pin name I/O type I I I I Power supply VCC1 VCC1 VCC1 Description Apply 2.7 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is that VCC1 VCC2.(2) Applies the power supply for the A-D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS. The microcomputer is in a reset state when applying "L" to the this pin. Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode. External data bus width select input Bus control pins(4) BYTE I VCC1 Switches the data bus in external memory space. The data bus is 16 bits long when the this pin is held "L" and 8 bits long when the this pin is held "H". Set it to either one. Connect this pin to VSS when an single-chip mode. Inputs and outputs data (D0 to D7) when these pins are set as the separate bus. Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the separate bus. Output address bits (A0 to A19). Input and output data (D0 to D7) and output address bits (A0 to A7) by timesharing when external 8-bit data bus are set as the multiplexed bus. Input and output data (D0 to D7) and output address bits (A8 to A15) by timesharing when external 16-bit data bus are set as the multiplexed bus. ________ ________ ________ ________ Output CS0 to CS3 signals. CS0 to CS3 are chip-select signals to specify an external space.
________ ______ _________ ________ _____
Power supply input VCC1, VCC2 VSS Analog power supply input Reset input CNVSS AVCC AVSS
____________
RESET CNVSS
D0 to D7 D8 to D15 A0 to A19 A0/D0 to A7/D7 A1/D0 to A8/D7 ______ ______ CS0 to CS3 WRL/WR WRH/BHE RD
I/O I/O O I/O I/O O O
VCC2 VCC2 VCC2 VCC2 VCC2 VCC2 VCC2
Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or BHE and WR can be switched by program.
________ _________ _____
________ _________
______ ________
_____
________
_________
_______
______
* WRL, WRH and RD are selected ________ The WRL signal becomes "L" by writing data to an even address in an external memory space. _________ The WRH signal becomes "L" by writing data to an odd address in an external memory space. _____ The RD pin signal becomes "L" by reading data in an external memory space.
______ ________ _____
* WR, BHE and RD are selected ______ The WR signal becomes "L" by writing data in an external memory space.
_____
The RD signal becomes "L" by reading data in an external memory space. ________ The BHE signal becomes "L" by accessing an odd address.
______ ________ _____
ALE
__________ __________ ________
O I O I
VCC2 VCC2 VCC2 VCC2
Select WR, BHE and RD for an external 8-bit data bus. ALE is a signal to latch the address.
__________
HOLD HLDA RDY
While the HOLD pin is held "L", the microcomputer is placed in a hold state. _________ In a hold state, HLDA outputs a "L" signal.
________
While applying a "L" signal to the RDY pin, the microcomputer is placed in a wait state.
I : Input
O : Output
I/O : Input and output
Power supply : Power supplies which relate to the external bus pins are separated as VCC2, thus they can be interfaced using the different voltage as VCC1. NOTES: 1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted. 2. In M16C/62PT, apply 2.7 to 5.5 V to the VCC1 and VCC2 pins. Also the apply condition is that VCC1 VCC2. 3. When use VCC1 VCC2, contacts due to some points or restrictions to be checked. 4. This pin function is not in M16C/62PT.
Rev.2.10 Nov. 07, 2003 page 16 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
Table 1.10 Pin Description (100-pin and 128-pin Version) (2)
Signal name Main clock input Main clock output Sub clock input Sub clock output BCLK output (2) Clock output
______
Pin name I/O type XIN XOUT XCIN XCOUT BCLK CLKOUT
________ ________
I O I O O O I I I I/O I I I O I O I/O I I O O O I/O I/O
Power supply VCC1 VCC1 VCC1 VCC1 VCC2 VCC2 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1
Description I/O pins for the main clock generation circuit. Connect a ceramic resonator or crystal oscillator between XIN and XOUT (3). To use the external clock, input the clock from XIN and leave XOUT open. I/O pins for a sub clock oscillation circuit. Connect a crystal oscillator between XCIN and XCOUT (3). To use the external clock, input the clock from XCIN and leave XCOUT open. Outputs the BCLK signal. The clock of the same cycle as fC, f8, or f32 is outputted. ______ Input pins for the INT interrupt
_______
INT interrupt input INT0 to INT5 _______ _______ NMI interrupt input NMI
_____ ______
Input pin for the NMI interrupt. Pin states can be read by the P8_5 bit in the P8 register. Input pins for the key input interrupt These are timer A0 to timer A4 I/O pins. (except the output of TAOUT for the Nchannel open drain output.) These are timer A0 to timer A4 input pins. Input pin for the Z-phase. These are timer B0 to timer B5 input pins. These are Three-phase motor control output pins. These are send control input pins. These are receive control output pins. These are transfer clock I/O pins. These are serial data input pins. These are serial data input pins. These are serial data output pins. (except TXD2 for the N-channel open drain output.) These are serial data output pins. This is output pin for transfer clock output from multiple pins function. These are serial data I/O pins. (except SDA2 for the N-channel open drain output.) These are transfer clock I/O pins. (except SCL2 for the N-channel open drain output.)
Key input interrupt KI0 to KI3 input Timer A TA0OUT to TA4OUT TA0IN to TA4IN ZP Timer B TB0IN to TB5IN
__ __
Three-phase motor U, U, V, V, __ control output W, W
__________ ________
Serial I/O
CTS0 to CTS2 ________ ________ RTS0 to RTS2 CLK0 to CLK4 RXD0 to RXD2 SIN3, SIN4 TXD0 to TXD2 SOUT3, SOUT4
I2C mode
CLKS1 SDA0 to SDA2 SCL0 to SCL2
I : Input
O : Output
I/O : Input and output
NOTES: 1. When use VCC1 VCC2, contacts due to some points or restrictions to be checked. 2. This pin function is not in M16C/62PT. 3. Ask the oscillator maker the oscillation characteristic.
Rev.2.10 Nov. 07, 2003 page 17
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
Table 1.11 Pin Description (100-pin and 128-pin Version) (3)
Signal name Pin name I/O type Power supply VCC1 I I VCC1 Description Applies the reference voltage for the A-D converter and D-A converter. Analog input pins for the A-D converter
Reference voltage VREF input A-D converter AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7 ___________ ADTRG ANEX0 ANEX1 DA0, DA1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7 (2), P13_0 to P13_7 (2) P6_0 to P6_7, P7_0 to P7_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7 (2) P8_0 to P8_4, P8_6, P8_7, P14_0, P14_1(2) Input port I : Input P8_5 O : Output
I I/O I O I/O
VCC1 VCC1 VCC1 VCC1 VCC2
This is an A-D trigger input pin. This is the extended analog input pin for the A-D converter, and is the output in external op-amp connection mode. This is the extended analog input pin for the A-D converter. This is the Input pin for the D-A converter. 8-bit I/O ports in CMOS, having a direction register to select an input or output. Each pin is set as an input port or output port. An input port can be set for a pull-up or for no pull-up in 4-bit unit by program.
D-A converter I/O port
I/O
VCC1
8-bit I/O ports having equivalent functions to P0. (except P7_0 and P7_1 for the N-channel open drain output.)
I/O
VCC1
I/O ports having equivalent functions to P0.
_______
I
VCC1
Input pin for the NMI interrupt. Pin states can be read by the P8_5 bit in the P8 register.
I/O : Input and output
NOTES: 1. When use VCC1 VCC2, contacts due to some points or restrictions to be checked. 2. Ports P11 to P14 are provided in the 128-pin version only.
Rev.2.10 Nov. 07, 2003 page 18 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
Table 1.12 Pin Description (80-pin Version) (1)
Signal name Pin name I/O type I I I I Power supply VCC1 VCC1 VCC1 Description Apply 2.7 to 5.5 V to the VCC1 pin and 0 V to the VSS pin. (2) Applies the power supply for the A-D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS. The microcomputer is in a reset state when applying "L" to the this pin. Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode. As for the BYTE pin of the 80-pin versions, pull-up processing is performed within the microcomputer. Main clock input Main clock output Sub clock input Sub clock output Clock output INT interrupt input XIN XOUT XCIN XCOUT CLKOUT ________ INT0 to INT2 I O I O O I I I I/O VCC1 VCC1 VCC1 VCC1 VCC2 VCC1 VCC1 VCC1 VCC1 I/O pins for the main clock generation circuit. Connect a ceramic resonator or crystal oscillator between XIN and XOUT (3). To use the external clock, input the clock from XIN and leave XOUT open. I/O pins for a sub clock oscillation circuit. Connect a crystal oscillator between XCIN and XCOUT (3). To use the external clock, input the clock from XCIN and leave XCOUT open. The clock of the same cycle as fC, f8, or f32 is outputted. ______ Input pins for the INT interrupt
_______
Power supply input VCC1, Analog power supply input Reset input CNVSS VSS AVCC, AVSS ____________ RESET CNVSS (BYTE)
______
________ _______
_______
NMI interrupt input NMI ______ ______ Key input interrupt KI0 to KI3 input Timer A TA0OUT, TA3OUT, TA4OUT TA0IN, TA3IN, TA4IN Timer B Serial I/O ZP TB0IN, TB2IN to TB5IN _________ _________ CTS0, CTS2
_________ _________
Input pin for the NMI interrupt. Input pins for the key input interrupt These are timer A0, timer A3 and Timer A4 I/O pins. (except the output of TAOUT for the N-channel open drain output.)
I
VCC1
These are timer A0, timer A3 and Timer A4 input pins.
I I I O I/O I I O O O I/O I/O
VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1 VCC1
Input pin for the Z-phase. These are timer B0, timer B2 to timer B5 input pins. These are send control input pins. These are receive control output pins. These are transfer clock I/O pins. These are serial data input pins. These are serial data input pins. These are serial data output pins. (except TXD2 for the N-channel open drain output.) These are serial data output pins. This is output pin for transfer clock output from multiple pins function. These are serial data I/O pins. (except SDA2 for the N-channel open drain output.) These are transfer clock I/O pins. (except SCL2 for the N-channel open drain output.)
RTS0, RTS2 CLK0, CLK1, CLK3, CLK4 RXD0 to RXD2 SIN4 TXD0 to TXD4 SOUT3, SOUT4 I2C mode CLKS1 SDA0 to SDA2 SCL0 to SCL2 I : Input O : Output
I/O : Input and output
NOTES: 1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted. 2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 pin. 3. Ask the oscillator maker the oscillation characteristic.
Rev.2.10 Nov. 07, 2003 page 19
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
1. Overview
Table 1.13 Pin Description (80-pin Version) (2)
Signal name Pin name I/O type I I Power supply VCC1 VCC1 Description Applies the reference voltage for the A-D converter and D-A converter. Analog input pins for the A-D converter
Reference voltage VREF input A-D converter AN0 to AN7, AN0_0 to AN0_7, AN2_0 to AN2_7
___________
ADTRG ANEX0 ANEX1 D-A converter I/O port DA0, DA1 P0_0 to P0_7, P2_0 to P2_7, P3_0 to P3_7, P5_0 to P5_7, P6_0 to P6_7, P10_0 to P10_7 P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7 P4_0 to P4_3, P7_0, P7_1, P7_6, P7_7 Input port I : Input P8_5 O : Output
I I/O I O I/O
VCC1 VCC1 VCC1 VCC1 VCC1
This is an A-D trigger input pin. This is the extended analog input pin for the A-D converter, and is the output in external op-amp connection mode. This is the extended analog input pin for the A-D converter. This is the Input pin for the D-A converter 8-bit I/O ports in CMOS, having a direction register to select an input or output. Each pin is set as an input port or output port. An input port can be set for a pull-up or for no pull-up in 4-bit unit by program.
I/O
VCC1
I/O ports having equivalent functions to P0.
I/O
VCC1
I/O ports having equivalent functions to P0. (except P7_0 and P7_1 for the N-channel open drain output.)
_______
I
VCC1
Input pin for the NMI interrupt. Pin states can be read by the P8_5 bit in the P8 register.
I/O : Input and output
NOTES: 1. There is no external connections for port P1, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version. Set the direction bits in these ports to "1" (input mode), and set the output data to "0" ("L") using the program.
Rev.2.10 Nov. 07, 2003 page 20 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
2. Central Processing Unit (CPU)
2. Central Processing Unit (CPU)
Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.
b31 b15 b8 b7 b0
R2 R3
R0H(R0's high bits) R0L(R0's low bits) R1H(R1's high bits)R1L(R1's low bits) R2 R3 A0 A1 FB Address registers (1) Frame base registers (1)
b0
Data registers (1)
b19
b15
INTBH
INTBL
Interrupt table register
The upper 4 bits of INTB are INTBH and the lower 16 bits of INTB are INTBL.
b19 b0
PC
b15 b0
Program counter
USP ISP SB
b15 b0
User stack pointer Interrupt stack pointer Static base register
FLG
b15 b8 b7 b0
Flag register
IPL
UI
OB SZ DC
Carry flag Debug flag Zero flag Sign flag Register bank select flag Overflow flag Interrupt enable flag Stack pointer select flag Reserved area Processor interrupt priority level Reserved area
NOTES: 1. These registers comprise a register bank. There are two register banks.
Figure 2.1 Central Processing Unit Register
2.1 Data Registers (R0, R1, R2 and R3)
The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0. The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32bit data register (R2R0). R3R1 is the same as R2R0.
2.2 Address Registers (A0 and A1)
The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).
Rev.2.10 Nov. 07, 2003 page 21
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
2. Central Processing Unit (CPU)
2.3 Frame Base Register (FB)
FB is configured with 16 bits, and is used for FB relative addressing.
2.4 Interrupt Table Register (INTB)
INTB is configured with 20 bits, indicating the start address of an interrupt vector table.
2.5 Program Counter (PC)
PC is configured with 20 bits, indicating the address of an instruction to be executed.
2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.
2.7 Static Base Register (SB)
SB is configured with 16 bits, and is used for SB relative addressing.
2.8 Flag Register (FLG)
FLG consists of 11 bits, indicating the CPU status. 2.8.1 Carry Flag (C Flag) This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit. 2.8.2 Debug Flag (D Flag) The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0". 2.8.3 Zero Flag (Z Flag) This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0". 2.8.4 Sign Flag (S Flag) This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0". 2.8.5 Register Bank Select Flag (B Flag) Register bank 0 is selected when this flag is "0" ; register bank 1 is selected when this flag is "1". 2.8.6 Overflow Flag (O Flag) This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0". 2.8.7 Interrupt Enable Flag (I Flag) This flag enables a maskable interrupt. Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted. 2.8.8 Stack Pointer Select Flag (U Flag) ISP is selected when the U flag is "0"; USP is selected when the U flag is "1". The U flag is cleared to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed. 2.8.9 Processor Interrupt Priority Level (IPL) IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7. If a requested interrupt has priority greater than IPL, the interrupt is enabled. 2.8.10 Reserved Area When write to this bit, write "0". When read, its content is indeterminate.
Rev.2.10 Nov. 07, 2003 page 22 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
3. Memory
3. Memory
Figure 3.1 is a memory map of the M16C/62P group. The address space extends the 1M bytes from address 00000h to FFFFFh. The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a 64-Kbyte internal ROM is allocated to the addresses from F0000h to FFFFFh. As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs. The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here. The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 10-Kbyte internal RAM is allocated to the addresses from 00400h to 02BFFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated. The SRF is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users. The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to the M16C/60 and M16C/20 Series Software Manual. In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users. Use M16C/62P (80-pin version) and M16C/62PT in single-chip mode. The memory expansion and microprocessor modes cannot be used.
00000h SFR 00400h Internal RAM XXXXXh Reserved area (1) 0F000h FFE00h
Internal ROM (data area) (3)
0FFFFh 10000h
Internal RAM Size 4K bytes 5K bytes 10K bytes 12K bytes 16K bytes 20K bytes 24K bytes 31K bytes Address XXXXXh 013FFh 017FFh 02BFFh 033FFh 043FFh 053FFh 063FFh 07FFFh Size 48K bytes 64K bytes 96K bytes 128K bytes 192K bytes 256K bytes 320K bytes 384K bytes 512K bytes Internal ROM
(3)
Special page vector table
External area
Address YYYYYh F4000h F0000h E8000h E0000h D0000h C0000h B0000h A0000h 80000h
27000h Reserved area 28000h External area 80000h Reserved area (2) YYYYYh FFFDCh Undefined instruction
Overflow
BRK instruction Address match Single step Watchdog timer DBC NMI Reset
Internal ROM (program area)
FFFFFh FFFFFh
NOTES: 1. During memory expansion and microprocessor modes, can not be used. 2. In memory expansion mode, can not be used. 3. As for the flash memory version, 4-Kbyte space (block A) exists. 4. Shown here is a memory map for the case where the PM10 bit in the PM1 register is "1" and the PM13 bit in the PM1 register is "1".
Figure 3.1 Memory Map
Rev.2.10 Nov. 07, 2003 page 23
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
4. SFR
4. SFR
Address 0000h 0001h 0002h 0003h 0004h 0005h 0006h 0007h 0008h 0009h 000Ah 000Bh 000Ch 000Dh 000Eh 000Fh 0010h 0011h 0012h 0013h 0014h 0015h 0016h 0017h 0018h 0019h 001Ah 001Bh 001Ch 001Dh 001Eh 001Fh 0020h 0021h 0022h 0023h 0024h 0025h 0026h 0027h 0028h 0029h 002Ah 002Bh 002Ch 002Dh 002Eh 002Fh 0030h 0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh
Register
Symbol
After reset
Processor mode register 0 (2) Processor mode register 1 System clock control register 0 System clock control register 1 Chip select control register (6) Address match interrupt enable register Protect register Data bank register (6) Oscillation stop detection register (3) Watchdog timer start register Watchdog timer control register Address match interrupt register 0
PM0 PM1 CM0 CM1 CSR AIER PRCR DBR CM2 WDTS WDC RMAD0
00000000b(CNVSS pin is "L") 00000011b(CNVSS pin is "H")
00001000b 01001000b 00100000b 00000001b XXXXXX00b XX000000b 00h 0000X000b XXh 00XXXXXXb (4) 00h 00h X0h 00h 00h X0h
Address match interrupt register 1
RMAD1
Voltage detection register 1 (5, 6) Voltage detection register 2 (5, 6) Chip select expansion control register (6) PLL control register 0 Processor mode register 2 Voltage down detection interrupt register (6) DMA0 source pointer
VCR1 VCR2 CSE PLC0 PM2 D4INT SAR0
00001000b 00h 00h 0001X010b XXX00000b 00h XXh XXh XXh XXh XXh XXh XXh XXh
DMA0 destination pointer
DAR0
DMA0 transfer counter
TCR0
DMA0 control register
DM0CON
00000X00b
DMA1 source pointer
SAR1
XXh XXh XXh XXh XXh XXh XXh XXh
DMA1 destination pointer
DAR1
DMA1 transfer counter
TCR1
DMA1 control register
DM1CON
00000X00b
NOTES : 1. The blank areas are reserved and cannot be accessed by users. 2. The PM00 and PM01 bits do not change at software reset, watchdog timer reset and oscillation stop detection reset. 3. The CM20, CM21, and CM27 bits do not change at oscillation stop detection reset. 4. The WDC5 bit is "0" (cold start) immediately after power-on. It can only be set to "1" in a program. It is set to "0" when the input voltage at the VCC1 pin drops to Vdet2 or less while the VC25 bit in the VCR2 register is set to "1" (RAM retention limit detection circuit enable 5. This register does not change at software reset, watchdog timer reset and oscillation stop detection reset. 6. This register cannot be used by M16C/62PT. X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 24 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
4. SFR
Symbol After reset
Address 0040h 0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh 0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h 0058h 0059h 005Ah 005Bh 005Ch 005Dh 005Eh 005Fh 0060h 0061h 0062h 0063h 0064h 0065h 0066h 0067h 0068h 0069h 006Ah 006Bh 006Ch 006Dh 006Eh 006Fh 0070h 0071h 0072h 0073h 0074h 0075h 0076h 0077h 0078h 0079h 007Ah 007Bh 007Ch 007Dh 007Eh 007Fh
Register
INT3 interrupt control register Timer B5 interrupt control register
Timer B4 interrupt control register, UART1 BUS collision detection interrupt control register Timer B3 interrupt control register, UART0 BUS collision detection interrupt control register
INT3IC TB5IC
TB4IC, U1BCNIC TB3IC, U0BCNIC
SI/O4 interrupt control register (S4IC), INT5 interrupt control register SI/O3 interrupt control register, INT4 interrupt control register UART2 Bus collision detection interrupt control register DMA0 interrupt control register DMA1 interrupt control register Key input interrupt control register A-D conversion interrupt control register
UART2 transmit interrupt control register UART2 receive interrupt control register UART0 transmit interrupt control register UART0 receive interrupt control register UART1 transmit interrupt control register UART1 receive interrupt control register
Timer A0 interrupt control register Timer A1 interrupt control register Timer A2 interrupt control register Timer A3 interrupt control register Timer A4 interrupt control register Timer B0 interrupt control register Timer B1 interrupt control register Timer B2 interrupt control register INT0 interrupt control register INT1 interrupt control register INT2 interrupt control register
S4IC, INT5IC S3IC, INT4IC BCNIC DM0IC DM1IC KUPIC ADIC S2TIC S2RIC S0TIC S0RIC S1TIC S1RIC TA0IC TA1IC TA2IC TA3IC TA4IC TB0IC TB1IC TB2IC INT0IC INT1IC INT2IC
XX00X000b XXXXX000b XXXXX000b XXXXX000b XX00X000b XX00X000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XXXXX000b XX00X000b XX00X000b XX00X000b
NOTES : 1. The blank areas are reserved and cannot be accessed by users. X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 25
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
4. SFR
Symbol After reset
Address 0080h 0081h 0082h 0083h 0084h 0085h 0086h 0087h to 01AFh 01B0h 01B1h 01B2h 01B3h 01B4h 01B5h 01B6h 01B7h 01B8h 01B9h 01BAh 01BBh 01BCh 01BDh 01BEh 01BFh 00C0h to 02AFh 0250h 0251h 0252h 0253h 0254h 0255h 0256h 0257h 0258h 0259h 025Ah 025Bh 025Ch 025Dh 025Eh 025Fh 0260h to 032Fh 0330h 0331h 0332h 0333h 0334h 0335h 0336h 0337h 0338h 0339h 033Ah 033Bh 033Ch 033Dh 033Eh 033Fh
Register
Flash identification register (2) Flash memory control register 1 (2) Flash memory control register 0 (2) Address match interrupt register 2
FIDR FMR1 FMR0 RMAD2
XXXXXX00b 0X00XX0Xb XX000001b 00h 00h X0h XXXXXX00b 00h 00h X0h
Address match interrupt enable register 2
Address match interrupt register 3
AIER2 RMAD3
Peripheral clock select register
PCLKR
00000011b
NOTES : 1. The blank areas are reserved and cannot be accessed by users. 2. This register is included in the flash memory version. X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 26 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
4. SFR
Symbol TBSR TA11 TA21 TA41 INVC0 INVC1 IDB0 IDB1 DTT ICTB2 After reset 000XXXXXb XXh XXh XXh XXh XXh XXh 00h 00h 00h 00h XXh XXh
Address 0340h 0341h 0342h 0343h 0344h 0345h 0346h 0347h 0348h 0349h 034Ah 034Bh 034Ch 034Dh 034Eh 034Fh 0350h 0351h 0352h 0353h 0354h 0355h 0356h 0357h 0358h 0359h 035Ah 035Bh 035Ch 035Dh 035Eh 035Fh 0360h 0361h 0362h 0363h 0364h 0365h 0366h 0367h 0368h 0369h 036Ah 036Bh 036Ch 036Dh 036Eh 036Fh 0370h 0371h 0372h 0373h 0374h 0375h 0376h 0377h 0378h 0379h 037Ah 037Bh 037Ch 037Dh 037Eh 037Fh
Register Timer B3, 4, 5 count start flag Timer A1-1 register Timer A2-1 register Timer A4-1 register Three-phase PWM control register 0 Three-phase PWM control register 1 Three-phase output buffer register 0 Three-phase output buffer register 1 Dead time timer Timer B2 interrupt occurrence frequency set counter
Timer B3 register Timer B4 register Timer B5 register
TB3 TB4 TB5
XXh XXh XXh XXh XXh XXh
Timer B3 mode register Timer B4 mode register Timer B5 mode register Interrupt cause select register 2 Interrupt cause select register SI/O3 transmit/receive register SI/O3 control register SI/O3 bit rate generator SI/O4 transmit/receive register SI/O4 control register SI/O4 bit rate generator
TB3MR TB4MR TB5MR IFSR2A IFSR S3TRR S3C S3BRG S4TRR S4C S4BRG
00XX0000b 00XX0000b 00XX0000b 00XXXXXXb 00h XXh 01000000b XXh XXh 01000000b XXh
UART0 special mode register 4 UART0 special mode register 3 UART0 special mode register 2 UART0 special mode register UART1 special mode register 4 UART1 special mode register 3 UART1 special mode register 2 UART1 special mode register UART2 special mode register 4 UART2 special mode register 3 UART2 special mode register 2 UART2 special mode register
UART2 transmit/receive mode register UART2 bit rate generator UART2 transmit buffer register UART2 transmit/receive control register 0 UART2 transmit/receive control register 1 UART2 receive buffer register
U0SMR4 U0SMR3 U0SMR2 U0SMR U1SMR4 U1SMR3 U1SMR2 U1SMR U2SMR4 U2SMR3 U2SMR2 U2SMR U2MR U2BRG U2TB U2C0 U2C1 U2RB
00h 000X0X0Xb X0000000b X0000000b 00h 000X0X0Xb X0000000b X0000000b 00h 000X0X0Xb X0000000b X0000000b 00h XXh XXh XXh 00001000b 00000010b XXh XXh
NOTES : 1. The blank areas are reserved and cannot be accessed by users.
X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 27
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
4. SFR
Symbol TABSR CPSRF ONSF TRGSR UDF TA0 TA1 TA2 TA3 TA4 TB0 TB1 TB2 TA0MR TA1MR TA2MR TA3MR TA4MR TB0MR TB1MR TB2MR TB2SC U0MR U0BRG U0TB U0C0 U0C1 U0RB U1MR U1BRG U1TB U1C0 U1C1 U1RB UCON After reset 00h 0XXXXXXXb 00h 00h 00h (2) XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh 00h 00h 00h 00h 00h 00XX0000b 00XX0000b 00XX0000b XXXXXX00b 00h XXh XXh XXh 00001000b 00000010b XXh XXh 00h XXh XXh XXh 00001000b 00000010b XXh XXh X0000000b
Address 0380h 0381h 0382h 0383h 0384h 0385h 0386h 0387h 0388h 0389h 038Ah 038Bh 038Ch 038Dh 038Eh 038Fh 0390h 0391h 0392h 0393h 0394h 0395h 0396h 0397h 0398h 0399h 039Ah 039Bh 039Ch 039Dh 039Eh 039Fh 03A0h 03A1h 03A2h 03A3h 03A4h 03A5h 03A6h 03A7h 03A8h 03A9h 03AAh 03ABh 03ACh 03ADh 03AEh 03AFh 03B0h 03B1h 03B2h 03B3h 03B4h 03B5h 03B6h 03B7h 03B8h 03B9h 03BAh 03BBh 03BCh 03BDh 03BEh 03BFh
Register Count start flag Clock prescaler reset flag One-shot start flag Trigger select register Up-down flag Timer A0 register Timer A1 register Timer A2 register Timer A3 register Timer A4 register Timer B0 register Timer B1 register Timer B2 register Timer A0 mode register Timer A1 mode register Timer A2 mode register Timer A3 mode register Timer A4 mode register Timer B0 mode register Timer B1 mode register Timer B2 mode register Timer B2 special mode register
UART0 transmit/receive mode register
UART0 bit rate generator UART0 transmit buffer register
UART0 transmit/receive control register 0 UART0 transmit/receive control register 1
UART0 receive buffer register
UART1 transmit/receive mode register
UART1 bit rate generator UART1 transmit buffer register
UART1 transmit/receive control register 0 UART1 transmit/receive control register 1
UART1 receive buffer register
UART transmit/receive control register 2
DMA0 request cause select register DMA1 request cause select register CRC data register CRC input register
DM0SL DM1SL CRCD CRCIN
00h 00h XXh XXh XXh
NOTES : 1.The blank areas are reserved and cannot be accessed by users. 2. Bits 7 to 5 in the Up-down flag are "0" by reset. However, The values in these bits when read are indeterminate. X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 28 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
4. SFR
Symbol AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 After reset XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh XXh
Address
03C0h 03C1h 03C2h 03C3h 03C4h 03C5h 03C6h 03C7h 03C8h 03C9h 03CAh 03CBh 03CCh 03CDh 03CEh 03CFh 03D0h 03D1h 03D2h 03D3h 03D4h 03D5h 03D6h 03D7h 03D8h 03D9h 03DAh 03DBh 03DCh 03DDh 03DEh 03DFh 03E0h 03E1h 03E2h 03E3h 03E4h 03E5h 03E6h 03E7h 03E8h 03E9h 03EAh 03EBh 03ECh 03EDh 03EEh 03EFh 03F0h 03F1h 03F2h 03F3h 03F4h 03F5h 03F6h 03F7h 03F8h 03F9h 03FAh 03FBh 03FCh 03FDh 03FEh 03FFh
Register A-D register 0 A-D register 1 A-D register 2 A-D register 3 A-D register 4 A-D register 5 A-D register 6 A-D register 7
A-D control register 2 A-D control register 0 A-D control register 1 D-A register 0 D-A register 1 D-A control register Port P14 control register Pull-up control register 3 Port P0 register Port P1 register Port P0 direction register Port P1 direction register Port P2 register Port P3 register Port P2 direction register Port P3 direction register Port P4 register Port P5 register Port P4 direction register Port P5 direction register Port P6 register Port P7 register Port P6 direction register Port P7 direction register Port P8 register Port P9 register Port P8 direction register Port P9 direction register Port P10 register Port P11 register Port P10 direction register Port P11 direction register Port P12 register Port P13 register Port P12 direction register Port P13 direction register Pull-up control register 0 Pull-up control register 1 Pull-up control register 2 Port control register
ADCON2 ADCON0 ADCON1 DA0 DA1 DACON PC14 PUR3 P0 P1 PD0 PD1 P2 P3 PD2 PD3 P4 P5 PD4 PD5 P6 P7 PD6 PD7 P8 P9 PD8 PD9 P10 P11 PD10 PD11 P12 P13 PD12 PD13 PUR0 PUR1 PUR2 PCR
00h 00000XXXb 00h 00h 00h 00h XX00XXXXb 00h XXh XXh 00h 00h XXh XXh 00h 00h XXh XXh 00h 00h XXh XXh 00h 00h XXh XXh 00X00000b 00h XXh XXh 00h 00h XXh XXh 00h 00h 00h
00000000b 00000010b
(2)
00h 00h
NOTES : 1. The blank areas are reserved and cannot be accessed by users. 2. At hardware reset 1 or hardware reset 2, the register is as follows: * "00000000b" where "L" is inputted to the CNVSS pin * "00000010b" where "H" is inputted to the CNVSS pin At software reset, watchdog timer reset and oscillation stop detection reset, the register is as follows: * "00000000b" where the PM01 to PM00 bits in the PM0 register are "00b" (single-chip mode) * "00000010b" where the PM01 to PM00 bits in the PM0 register are "01b" (memory expansion mode) or "11b" (microprocessor mode) X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 29
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
5. Electrical Characteristics
5.1 Electrical Characteristics (M16C/62P)
Table 5.1 Absolute Maximum Ratings
Symbol
VCC1, VCC2 VCC2 AVCC Supply voltage Supply voltage Analog supply voltage Input voltage RESET, CNVSS, BYTE, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, VREF, XIN P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 P7_0, P7_1 Output voltage VO P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, XOUT P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 P7_0, P7_1 Pd Topr Power dissipation Operating ambient temperature When the microcomputer is operating Flash program erase Tstg Storage temperature -40 C < Topr 85 C
Parameter
Condition
VCC1=AVCC VCC2 VCC1=AVCC
Rated value
-0.3 to 6.5 -0.3 to VCC1+0.1 -0.3 to 6.5
Unit
V V V
-0.3 to VCC1+0.3 (1)
V
VI
-0.3 to VCC2+0.3 (1)
V
-0.3 to 6.5
V
-0.3 to VCC1+0.3 (1)
V
-0.3 to VCC2+0.3 (1)
V
-0.3 to 6.5 300 -20 to 85 / -40 to 85 0 to 6 0 -65 to 150
V mW C
C
NOTES: 1. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 30 of 84
M16C/62 Group (M16C/62P, M16C/62PT) Table 5.2 Recommended Operating Conditions (1) (1)
Symbol
VCC1, VCC2 AVcc f(ripple)(2) VP-P(ripple)(2) Supply voltage(VCC1VCC2) Analog supply voltage Power supply ripple allowable frequency Power supply ripple allowable amplitude voltage (VCC1=5V) (VCC1=3V) (VCC1=5V) (VCC1=3V)
5. Electrical Characteristics (M16C/62P)
Parameter
Min.
2.7
Standard Typ. Max.
5.0 VCC1 10 0.5 0.3 0.3 0.3 5.5
Unit
V V MHz V V V/ms V/ms V/ms V
VCC(|V / T|) Power supply ripple rising / falling gradient
(2)
SVCC(2) Vss AVss
Power supply rising gradient Supply voltage Analog supply voltage HIGH input P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode) P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor modes) P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE P7_0 , P7_1 LOW input voltage P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode) P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor modes) P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE HIGH peak output P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, current P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, HIGH average P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, output current P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, LOW peak output P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, current P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, LOW average P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, output current P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
0.05 0 0 0.8VCC2 0.8VCC2 0.5VCC2 0.8VCC1 0.8VCC1 0 0 0 VCC2 VCC2 VCC2 VCC1 6.5 0.2VCC2 0.2VCC2 0.16VCC2
V V V V V V V V V V
VIH
VIL
0
0.2VCC1
IOH (peak)
-10.0
mA
IOH (avg)
-5.0
mA
IOL (peak)
10.0
mA
IOL (avg)
5.0
mA
NOTES: 1. Referenced to VCC1 = VCC2 = 2.7 to 5.5V at Topr = -20 to 85 C / -40 to 85 C unless otherwise specified. 2. SVCC indicates the minimum time gradient until VCC1 reaches 2.7V.
f(ripple) V
SVCC VCC1
Vp-p(ripple)
0V t
3. The mean output current is the mean value within 100ms. 4. The total IOL (peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14_0 and P14_1 must be 80mA max. The total IOL (peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH (peak) for ports P0, P1, and P2 must be -40mA max. The total IOH (peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH (peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH (peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40mA max. 5. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 31
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
Table 5.3 Recommended Operating Conditions (2) (1)
Symbol
f (XIN) f (XCIN) f (Ring) f (PLL) f (BCLK) tSU(PLL) Main clock input oscillation frequency Sub-clock oscillation frequency Ring oscillation frequency VCC1=3.0 to 5.5V PLL clock oscillation frequency (2) CPU operation clock PLL frequency synthesizer stabilization wait time VCC1=5.0V VCC1=3.0V VCC1=2.7 to 3.0V 0.5 10 10 0
Parameter
(2)
Min.
VCC1=3.0 to 5.5V VCC1=2.7 to 3.0V 0 0
Standard Typ. Max.
16 20 X VCC1-44 50 2 24 46.67 X VCC1116 24 20 50
Unit
MHz MHz kHz MHz MHz MHz MHz ms ms
32.768 1
NOTES: 1. Referenced to VCC1 = VCC2 = 2.7 to 5.5V at Topr = -20 to 85 C / -40 to 85 C unless otherwise specified. 2. Relationship between main clock oscillation frequency, PLL clock oscillation frequency and supply voltage.
f(XIN) operating maximum frequency [MHz]
f(PLL) operating maximum frequency [MHz]
Main clock input oscillation frequency 20 x VCC1-44MHz 16.0
PLL clock oscillation frequency 46.67 x VCC1-116MHz 24.0
10.0
10.0
0.0 2.7 3.0 5.5 VCC1[V] (main clock: no division)
0.0 2.7 3.0 5.5 VCC1[V] (PLL clock oscillation)
Rev.2.10 Nov. 07, 2003 page 32 of 84
M16C/62 Group (M16C/62P, M16C/62PT) Table 5.4 A-D Conversion Characteristics (1)
Symbol
- Resolution
5. Electrical Characteristics (M16C/62P)
Parameter
Measuring condition
VREF =VCC1 VREF= VCC1= 5V AN0 to AN7 input AN0_0 to AN0_7 input AN2_0 to AN2_7 input ANEX0, ANEX1 input External operation amp connection mode AN0 to AN7 input AN0_0 to AN0_7 input AN2_0 to AN2_7 input ANEX0, ANEX1 input
Min.
Standard Typ. Max.
10
Unit
Bits
INL
Integral nonlinearity error
3 7
LSB
10 bit
LSB
VREF= VCC1= 3.3V
5
LSB
8 bit
External operation amp connection mode VREF =VCC1=3.3V VREF= VCC1= 5V AN0 to AN7 input AN0_0 to AN0_7 input AN2_0 to AN2_7 input ANEX0, ANEX1 input External operation amp connection mode VREF= VCC1= 3.3V AN0 to AN7 input AN0_0 to AN0_7 input AN2_0 to AN2_7 input ANEX0, ANEX1 input External operation amp connection mode
7 2 3
LSB LSB LSB
-
Absolute accuracy
10 bit
7
LSB
5 7 2 3 1 3 3 40
LSB
LSB LSB k LSB LSB LSB k s s s V V
8 bit - DNL - - RLADDER tCONV tCONV tSAMP VREF VIA Tolerance level impedance Differential non-linearity error Offset error Gain error Ladder resistance Conversion time(10bit), Sample & hold function available Conversion time(8bit), Sample & hold function available Sampling time Reference voltage Analog input voltage
VREF =VCC1=3.3V
VREF =VCC1 VREF =VCC1=5V, oAD=12MHz VREF =VCC1=5V, oAD=12MHz
10 2.75 2.33 0.25 2.0 0
VCC1 VREF
NOTES: 1. Referenced to VCC1=AVCC=VREF=3.3 to 5.5V, VSS=AVSS=0V at Topr = -20 to 85 C / -40 to 85 C unless otherwise specified. 2. If VCC1 > VCC2, do not use AN0_0 to AN0_7 and AN2_0 to AN2_7 as analog input pins. 3. AD operation clock frequency (oAD frequency) must be 12 MHz or less. And divide the fAD if VCC1 is less than 4.0V, and oAD frequency into 10 MHz or less. 4. A case without sample & hold function turn oAD frequency into 250 kHz or more in addition to a limit of Note 3. A case with sample & hold function turn oAD frequency into 1MHz or more in addition to a limit of Note 3.
Table 5.5 D-A Conversion Characteristics (1)
Symbol
- - tsu RO IVREF
Parameter Resolution Absolute accuracy Setup time Output resistance Reference power supply input current
Measuring condition
Standard Min. Typ. Max.
8 1.0 3 20 1.5
Unit
Bits % s k mA
4 (Note 2)
10
NOTES: 1. Referenced to VCC1=VREF=3.3 to 5.5V, VSS=AVSS=0V at Topr = -20 to 85 C / -40 to 85 C unless otherwise specified. 2. This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "00h". The A-D converter's ladder resistance is not included. Also, when D-A register contents are not "00h", the current IVREF always flows even though Vref may have been set to be unconnected by the A-D control register.
Rev.2.10 Nov. 07, 2003 page 33
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
Table 5.6 Flash Memory Version Electrical Characteristics (1) for 100 cycle products (D3, D5, U3, U5) Standard Symbol Parameter Unit Min. Typ. Max.
Program and erase endurance (3) Word program time (VCC1=5.0V, Topr=25C) Lock bit program time Block erase time (VCC1=5.0V, Topr=25 C) 4K bytes block 8K bytes block 32K bytes block 64K bytes block tPS Erase all unlocked blocks time Data hold time (5)
(2)
100 25 25 0.3 0.3 0.5 0.8 200 200 4 4 4 4 4Xn 15 10
cycle s s s s s s s s year
Flash memory circuit stabilization wait time
Table 5.7 Flash Memory Version Electrical Characteristics (6) for 10,000 cycle products (D7, D9, U7, U7) (Block A and Block 1 (7)) Standard Symbol Parameter Min. Typ.
tPS Program and erase endurance (3, 8, 9) Word program time (VCC1=5.0V, Topr=25C) Lock bit program time Block erase time (VCC1=5.0V, Topr=25 C) 4K bytes block 10,000 (4) 25 25 0.3
Max.
Unit
cycle s s s
Flash memory circuit stabilization wait time Data hold time (5) 10
15
s year
NOTES : 1. Referenced to VCC1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 C unless otherwise specified. 2. n denotes the number of block erases. 3. Program and Erase Endurance refers to the number of times a block erase can be performed. If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times. For example, if a 4K bytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited) 4. Maximum number of E/W cycles for which operation is guaranteed. 5. Topr = -40 to 85 C (D3, D7, U3, U7) / -20 to 85 C (D5, D9, U5, U9). 6. Referenced to VCC1 = 2.7 to 5.5V at Topr = -20 to 85 C (D9, U9) / -40 to 85 C (D7, U7) unless otherwise specified. 7. Table 5.7 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.6. 8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to track the total number of times erasure is used. 9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase command at least three times until erase error disappears. 10. Customers desiring E/W failure rate information should contact their Renesas technical support representative.
Table 5.8 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr = 0 to 60oC)
Flash program, erase voltage VCC1 = 3.3 V 0.3 V or 5.0 V 0.5 V
Flash read operation voltage VCC1=2.7 to 5.5 V
Rev.2.10 Nov. 07, 2003 page 34 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
Table 5.9 Low Voltage Detection Circuit Electrical Characteristics (1)
Symbol
Vdet4 Vdet3 Vdet3s Vdet3r Vdet2
Parameter
Voltage down detection voltage (1) Reset level detection voltage (1, 2) Low voltage reset retention voltage Low voltage reset release voltage
(3)
Measuring condition
Min.
3 .3 2 .2
Standard Typ.
3 .8 2 .8
Max.
4.4 3.6
Unit
V V V
VCC1=0.8 to 5.5V
0 .8 2 .2 1.4 2 .9 2 .0 4.0 2.7
V V
RAM retention limit detection voltage (1)
NOTES: 1. Vdet4 > Vdet3 > Vdet2. 2. Where reset level detection voltage is less than 2.7 V, if the supply power voltage is greater than the reset level detection voltage, the operation at f(BCLK) 10MHz is guaranteed. 3. Vdet3r > Vdet3 is not guaranteed.
Table 5.10 Power Supply Circuit Timing Characteristics
Symbol
td(P-R) td(R-S) td(W-S) td(M-L) td(S-R) td(E-A)
Parameter
Time for internal power supply stabilization during powering-on STOP release time Low power dissipation mode wait mode release time Time for internal power supply stabilization when main clock oscillation starts Hardware reset 2 release wait time Low voltage detection circuit operation start time
Measuring condition
Min.
Standard Typ.
Max.
2 150 150 50
Unit
ms s s s ms s
VCC1=2.7 to 5.5V
VCC1=Vdet3r to 5.5V VCC1=2.7 to 5.5V
6 (1)
20 20
NOTES: 1. When VCC1 = 5V.
VCC1
Vdet3r td(S-R)
Interrupt for stop mode release CPU clock
td(R-S)
Rev.2.10 Nov. 07, 2003 page 35
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Table 5.11 Electrical Characteristics (1)
Symbol Parameter
HIGH output P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, voltage P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 HIGH output P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, voltage P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 HIGH output voltage VOH HIGH output voltage XCOUT XOUT
HIGHPOWER LOWPOWER HIGHPOWER LOWPOWER
Measuring condition
IOH=-5mA IOH=-5mA
(2)
Min.
VCC1-2.0 VCC2-2.0 VCC1-0.3 VCC2-0.3 VCC1-2.0 VCC1-2.0
Standard Typ.
Max.
VCC1
Unit
V
VOH
VCC2 VCC1 V VCC2 VCC1 VCC1 2 .5 1 .6 2.0 V 2.0 0.45 V V V
IOH=-200A IOH=-200A (2) IOH=-1mA IOH=-0.5mA With no load applied With no load applied IOL=5mA IOL=5mA (2) IOL=200A IOL=200A IOL=1mA IOL=0.5mA With no load applied With no load applied
(2)
VOH
VOL
LOW output P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, voltage P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 LOW output P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 voltage P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 LOW output voltage LOW output voltage Hysteresis XOUT XCOUT
HIGHPOWER LOWPOWER HIGHPOWER LOWPOWER
VOL
0.45 2.0 2.0 0 0 V V
VOL
VT+-VT-
HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT5, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 TO SDA2, CLK0 to CLK4,TA0OUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3, SIN4 RESET XIN P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE
0 .2
1.0
V
VT+-VTVT+-VT-
Hysteresis Hysteresis HIGH input current
0.2 0.2
2.5 0.8
V V
IIH
VI=5V
5.0
A
LOW input current IIL
VI=0V
-5.0
A
RPULLUP
Pull-up resistance
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, VI=0V P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 XIN XCIN At stop mode
30
50
170
k M M V
RfXIN RfXCIN VRAM
Feedback resistance Feedback resistance RAM retention voltage
1.5 15 2 .0
NOTES: 1. Referenced to VCC1=VCC2=4.2 to 5.5V, VSS=0V at Topr = -20 to 85 C / -40 to 85 C, f(BCLK)=24MHz unless otherwise specified. 2. Where the product is used at VCC1 = 5 V and VCC2 = 3 V, refer to the 3 V version value for the pin specified value on the VCC2 port side. 3. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 36 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Table 5.12 Electrical Characteristics (2) (1)
Symbol Parameter
In single-chip mode, the output pins are open and other pins are VSS
Mask ROM
Measuring condition
f(BCLK)=24MHz, No division, PLL operation No division, Ring oscillation f(BCLK)=24MHz, No division, PLL operation No division, Ring oscillation
Flash memory Program Flash memory Erase Mask ROM
Min.
Standard Typ.
14 1 18 1 .8 15 25 25
Max.
20
Unit
mA mA
Flash memory
27
mA mA mA mA A
f(BCLK)=10MHz, VCC1=5.0V f(BCLK)=10MHz, VCC1=5.0V f(XCIN)=32kHz, Low power dissipation mode, ROM (3) f(BCLK)=32kHz, Low power dissipation mode, RAM (3) f(BCLK)=32kHz Low power dissipation mode, Flash memory (3) Ring oscillation, Wait mode f(BCLK)=32kHz, Wait mode (2),
ICC
Power supply current (VCC1=4.0 to 5.5V)
Flash memory
25
A
420
A A A
50 7.5
Mask ROM Flash memory
Oscillation capacity High
f(BCLK)=32kHz, Wait mode (2),
Oscillation capacity Low
2.0 0.8 0.7 1.2 1.1 3.0 4 8 6
A A A A A
Stop mode, Topr=25C Idet4 Idet3 Idet2 Voltage down detection dissipation current Reset area detection dissipation current (4) RAM retention limit detection dissipation current (4)
(4)
NOTES: 1. Referenced to VCC1=VCC2= 4.2 to 5.5V, VSS=0V at Topr = -20 to 85 C / -40 to 85 C, f(BCLK)=24MHz unless otherwise specified. 2. With one timer operated using fC32. 3. This indicates the memory in which the program to be executed exists. 4. Idet is dissipation current when the following bit is set to "1" (detection circuit enabled). Idet4: VC27 bit of VCR2 register Idet3: VC26 bit of VCR2 register Idet2: VC25 bit of VCR2 register
Rev.2.10 Nov. 07, 2003 page 37
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Timing Requirements (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified)
Table 5.13 External Clock Input (XIN input) Symbol
tc tw(H) tw(L) tr tf
Parameter
External clock input cycle time External clock input HIGH pulse width External clock input LOW pulse width External clock rise time External clock fall time
Standard Min. Max.
62.5 25 25 15 15
Unit
ns ns ns ns ns
Table 5.14 Memory Expansion Mode and Microprocessor Mode
Symbol
tac1(RD-DB) tac2(RD-DB) tac3(RD-DB) tsu(DB-RD) tsu(RDY-BCLK ) tsu(HOLD-BCLK ) th(RD-DB) th(BCLK -RDY) th(BCLK-HOLD )
Parameter
Data input access time (for setting with no wait) Data input access time (for setting with wait) Data input access time (when accessing multiplex bus area) Data input setup time RDY input setup time HOLD input setup time Data input hold time RDY input hold time HOLD input hold time
Standard Min. Max.
(Note 1) (Note 2) (Note 3)
40 30 40 0 0 0
Unit
ns ns ns ns ns ns ns ns ns
NOTES: 1. Calculated according to the BCLK frequency as follows:
0.5 X 109 f(BCLK) - 45 [ns]
2. Calculated according to the BCLK frequency as follows:
(n-0.5) X 109 - 45 f(BCLK) [ns]
n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.
3. Calculated according to the BCLK frequency as follows:
(n-0.5) X 109 - 45 f(BCLK) [ns]
n is "2" for 2-wait setting, "3" for 3-wait setting.
Rev.2.10 Nov. 07, 2003 page 38 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Timing Requirements (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified)
Table 5.15 Timer A Input (Counter Input in Event Counter Mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. Max. 100 40 40 Unit ns ns ns
Table 5.16 Timer A Input (Gating Input in Timer Mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. Max. 400 200 200 Unit ns ns ns
Table 5.17 Timer A Input (External Trigger Input in One-shot Timer Mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Min. Standard Max. Unit ns ns ns
200 100 100
Table 5.18 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)
Symbol tw(TAH) tw(TAL) TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Max. Min. 100 100 Unit ns ns
Table 5.19 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)
Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP-TIN) th(TIN-UP) TAiOUT input cycle time TAiOUT input HIGH pulse width TAiOUT input LOW pulse width TAiOUT input setup time TAiOUT input hold time Parameter Standard Min. Max. 2000 1000 1000 400 400 Unit ns ns ns ns ns
Table 5.20 Timer A Input (Two-phase Pulse Input in Event Counter Mode)
Symbol tc(TA) tsu(TAIN-TAOUT) tsu(TAOUT-TAIN) TAiIN input cycle time TAiOUT input setup time TAiIN input setup time Parameter Standard Max. Min. 800 200 200 Unit ns ns ns
Rev.2.10 Nov. 07, 2003 page 39
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Timing Requirements (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified) Table 5.21 Timer B Input (Counter Input in Event Counter Mode)
Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Parameter TBiIN input cycle time (counted on one edge) TBiIN input HIGH pulse width (counted on one edge) TBiIN input LOW pulse width (counted on one edge) TBiIN input cycle time (counted on both edges) TBiIN input HIGH pulse width (counted on both edges) TBiIN input LOW pulse width (counted on both edges) Standard Min. 100 40 40 200 80 80 Max. Unit ns ns ns ns ns ns
Table 5.22 Timer B Input (Pulse Period Measurement Mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input HIGH pulse width TBiIN input LOW pulse width Parameter Standard Min. 400 200 200 Max. Unit ns ns ns
Table 5.23 Timer B Input (Pulse Width Measurement Mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input HIGH pulse width TBiIN input LOW pulse width Parameter Standard Min. 400 200 200 Max. Unit ns ns ns
Table 5.24 A-D Trigger Input
Symbol tc(AD) tw(ADL) Parameter ADTRG input cycle time (trigger able minimum) ADTRG input LOW pulse width Standard Min. 1000 125 Max. Unit ns ns
Table 5.25 Serial I/O
Symbol tc(CK) tw(CKH) tw(CKL) td(C-Q) th(C-Q) tsu(D-C) th(C-D) CLKi input cycle time CLKi input HIGH pulse width CLKi input LOW pulse width TXDi output delay time TXDi hold time RXDi input setup time RXDi input hold time
_______
Parameter
Standard Min. 200 100 100 80 0 30 90 Max.
Unit ns ns ns ns ns ns ns
Table 5.26 External Interrupt INTi Input
Symbol tw(INH) tw(INL) INTi input HIGH pulse width INTi input LOW pulse width Parameter Standard Min. 250 250 Max. Unit ns ns
Rev.2.10 Nov. 07, 2003 page 40 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Switching Characteristics (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified) Table 5.27 Memory Expansion and Microprocessor Modes (for setting with no wait)
Symbol
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) td(BCLK-ALE) th(BCLK-ALE) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) th(WR-DB) td(BCLK-HLDA)
Parameter
Address output delay time Address output hold time (refers to BCLK) Address output hold time (refers to RD) Address output hold time (refers to WR) Chip select output delay time Chip select output hold time (refers to BCLK) ALE signal output delay time ALE signal output hold time RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (refers to BCLK) Data output hold time (refers to BCLK)(3) Data output delay time (refers to WR) Data output hold time (refers to WR)(3) HLDA output delay time
Measuring condition
Standard Min. Max.
25 4 0 (Note 2) 25 4 15 -4 25 0 25 0 40 4 (Note 1) (Note 2) 40
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
See Figure 5.1
NOTES: 1. Calculated according to the BCLK frequency as follows:
0.5 X 109 f(BCLK) - 40 [ns]
f(BCLK) is 12.5MHz or less.
2. Calculated according to the BCLK frequency as follows:
0.5 X 109 - 10 f(BCLK) [ns]
3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1 - VOL / VCC2) by a circuit of the right figure. For example, when VOL = 0.2VCC2, C = 30pF, R = 1k, hold time of output "L" level is t = - 30pF X 1k X ln (1 - 0.2VCC2 / VCC2) = 6.7ns.
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 30pF
R DBi C
Figure 5.1 Ports P0 to P14 Measurement Circuit
Rev.2.10 Nov. 07, 2003 page 41 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Switching Characteristics (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified) Table 5.28 Memory Expansion and Microprocessor Modes (for 1- to 3-wait setting and external area access)
Symbol
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) td(BCLK-ALE) th(BCLK-ALE) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) th(WR-DB) td(BCLK-HLDA)
Parameter
Address output delay time Address output hold time (refers to BCLK) Address output hold time (refers to RD) Address output hold time (refers to WR) Chip select output delay time Chip select output hold time (refers to BCLK) ALE signal output delay time ALE signal output hold time RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (refers to BCLK) Data output hold time (refers to BCLK)(3) Data output delay time (refers to WR) Data output hold time (refers to WR)(3) HLDA output delay time
Measuring condition
Standard Min. Max.
25 4 0 (Note 2) 25 4 15
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
See Figure 5.1
-4 25 0 25 0 40 4 (Note 1) (Note 2) 40
NOTES: 1. Calculated according to the BCLK frequency as follows:
(n-0.5) X 109 - 40 f(BCLK) [ns]
n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n=1, f(BCLK) is 12.5MHz or less.
2. Calculated according to the BCLK frequency as follows:
0.5 X 109 - 10 f(BCLK) [ns]
3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1 - VOL / VCC2) by a circuit of the right figure. For example, when VOL = 0.2VCC2, C = 30pF, R = 1k, hold time of output "L" level is t = - 30pF X 1k X ln (1 - 0.2VCC2 / VCC2) = 6.7ns.
R DBi C
Rev.2.10 Nov. 07, 2003 page 42 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Switching Characteristics (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified) Table 5.29 Memory Expansion and Microprocessor Modes (for 2- to 3-waitysetting, external area access and multiplex bus selection) p
th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) th(RD-CS) th(WR-CS) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) Address output hold time (refers to BCLK) Address output hold time (refers to RD) Address output hold time (refers to WR) Chip select output delay time Chip select output hold time (refers to BCLK) Chip select output hold time (refers to RD) Chip select output hold time (refers to WR) RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (refers to BCLK) Data output hold time (refers to BCLK) Data output delay time (refers to WR) 4 (Note 1) (Note 1) 25 4 (Note 1) (Note 1) 25 0 25 0 40 ns ns ns ns ns ns ns ns ns ns ns ns ns ns 40 15 -4 (Note 3) (Note 4) 0 0 8 ns ns ns ns ns ns ns ns ns
See Figure 5.1
4 (Note 2) (Note 1)
th(WR-DB) Data output hold time (refers to WR) td(BCLK-HLDA) HLDA output delay time td(BCLK-ALE) ALE signal output delay time (refers to BCLK) th(BCLK-ALE) ALE signal output hold time (refers to BCLK) td(AD-ALE) ALE signal output delay time (refers to Address) th(ALE-AD) td(AD-RD) td(AD-WR) tdZ(RD-AD) ALE signal output hold time (refers to Adderss) RD signal output delay from the end of Adress WR signal output delay from the end of Adress Address output floating start time
NOTES: 1. Calculated according to the BCLK frequency as follows:
0.5 X 109 f(BCLK) -10 [ns]
2. Calculated according to the BCLK frequency as follows:
(n-0.5) X 109 -40 f(BCLK) [ns]
n is "2" for 2-wait setting, "3" for 3-wait setting.
3. Calculated according to the BCLK frequency as follows:
0.5 X 109 f(BCLK) -25 [ns]
4. Calculated according to the BCLK frequency as follows:
0.5 X 109 f(BCLK) -15 [ns]
Rev.2.10 Nov. 07, 2003 page 43
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
XIN input tr tw(H) tf tc tw(L)
tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) TAiOUT input
(Up/down input)
During event counter mode TAiIN input
(When count on falling edge is selected)
th(TIN-UP)
tsu(UP-TIN)
TAiIN input
(When count on rising edge is selected)
Two-phase pulse input in event counter mode TAiIN input tsu(TAIN-TAOUT) TAiOUT input
tc(TA) tsu(TAIN-TAOUT) tsu(TAOUT-TAIN) tsu(TAOUT-TAIN)
tc(TB) tw(TBH) TBiIN input tw(TBL) tc(AD) tw(ADL) ADTRG input
Figure 5.2 Timing Diagram (1)
Rev.2.10 Nov. 07, 2003 page 44
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
tc(CK) tw(CKH) CLKi tw(CKL) TXDi td(C-Q) RXDi tw(INL) INTi input tw(INH) tsu(D-C) th(C-D) th(C-Q)
Figure 5.3 Timing Diagram (2)
Rev.2.10 Nov. 07, 2003 page 45
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
Memory Expansion Mode, Microprocessor Mode
(Effective for setting with wait)
VCC1 = VCC2 = 5V
BCLK RD (Separate bus) WR, WRL, WRH (Separate bus) RD (Multiplexed bus) WR, WRL, WRH (Multiplexed bus) RDY input
tsu(RDY-BCLK) th(BCLK-RDY)
(Common to setting with wait and setting without wait)
BCLK tsu(HOLD-BCLK) HOLD input th(BCLK-HOLD)
HLDA output td(BCLK-HLDA) P0, P1, P2, P3, P4, P5_0 to P5_2 (1)
Hi-Z
td(BCLK-HLDA)
NOTES: 1. These pins are set to high-impedance regardless of the input level of the BYTE pin, PM06 bit in PM0 register and PM11 bit in PM1 register. Measuring conditions : * VCC1=VCC2=5V * Input timing voltage : Determined with VIL=1.0V, VIH=4.0V * Output timing voltage : Determined with VOL=2.5V, VOH=2.5V
Figure 5.4 Timing Diagram (3)
Rev.2.10 Nov. 07, 2003 page 46
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(For setting with no wait) Read timing
BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi tcyc
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
0ns.min
ALE td(BCLK-RD)
25ns.max
th(BCLK-RD)
0ns.min
RD tac1(RD-DB)
(0.5 X tcyc-45)ns.max Hi-Z
DBi
tsu(DB-RD)
40ns.min
th(RD-DB)
0ns.min
Write timing
BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi tcyc
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(WR-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-WR)
25ns.max
th(BCLK-WR)
0ns.min
WR,WRL, WRH td(BCLK-DB)
40ns.max Hi-Z
th(BCLK-DB)
4ns.min
DBi td(DB-WR) th(WR-DB)
tcyc=
1 f(BCLK)
(0.5 X tcyc-40)ns.min (0.5 X tcyc-10)ns.min
Measuring conditions * VCC1=VCC2=5V * Input timing voltage : VIL=0.8V, VIH=2.0V * Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.5 Timing Diagram (4)
Rev.2.10 Nov. 07, 2003 page 47
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(for 1-wait setting and external area access) Read timing
BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi tcyc
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
0ns.min
ALE td(BCLK-RD)
25ns.max
th(BCLK-RD)
0ns.min
RD tac2(RD-DB)
(1.5 X tcyc-45)ns.max
DBi
Hi-Z
th(RD-DB) tsu(DB-RD)
40ns.min 0ns.min
Write timing
BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi tcyc
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(WR-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-WR)
25ns.max
th(BCLK-WR)
0ns.min
WR,WRL, WRH td(BCLK-DB)
40ns.max Hi-Z
th(BCLK-DB)
4ns.min
DBi td(DB-WR) th(WR-DB)
(0.5 X tcyc-10)ns.min
tcyc=
1 f(BCLK)
(0.5 X tcyc-40)ns.min
Measuring conditions * VCC1=VCC2=5V * Input timing voltage : VIL=0.8V, VIH=2.0V * Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.6 Timing Diagram (5)
Rev.2.10 Nov. 07, 2003 page 48
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(for 2-wait setting and external area access) Read timing
tcyc BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
0ns.min
ALE td(BCLK-RD)
25ns.max
th(BCLK-RD)
0ns.min
RD tac2(RD-DB)
(2.5 X tcyc-45)ns.max
DBi
Hi-Z
tSU(DB-RD)
40ns.min
th(RD-DB)
0ns.min
Write timing
tcyc
BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
25ns.max
th(WR-AD) th(BCLK-ALE)
-4ns.min (0.5 X tcyc-10)ns.min
ALE td(BCLK-WR)
25ns.max
th(BCLK-WR)
0ns.min
WR, WRL WRH td(BCLK-DB)
40ns.max
th(BCLK-DB)
4ns.min
DBi
Hi-Z
td(DB-WR)
(1.5 X tcyc-40)ns.min
th(WR-DB)
(0.5 X tcyc-10)ns.min
tcyc=
1 f(BCLK)
Measuring conditions * VCC1=VCC2=5V * Input timing voltage : VIL=0.8V, VIH=2.0V * Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.7 Timing Diagram (6)
Rev.2.10 Nov. 07, 2003 page 49
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(for 3-wait setting and external area access) Read timing
tcyc BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
0ns.min
ALE td(BCLK-RD)
25ns.max
th(BCLK-RD)
0ns.min
RD tac2(RD-DB)
(3.5 X tcyc-45)ns.max
DBi
Hi-Z
tsu(DB-RD)
40ns.min
th(RD-DB)
0ns.min
Write timing
tcyc BCLK td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
CSi td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(WR-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-WR)
25ns.max
th(BCLK-WR)
0ns.min
WR, WRL WRH td(BCLK-DB)
40ns.max
th(BCLK-DB)
4ns.min
DBi
Hi-Z
td(DB-WR)
(2.5 X tcyc-40)ns.min
th(WR-DB)
(0.5 X tcyc-10)ns.min
tcyc=
1 f(BCLK)
Measuring conditions * VCC1=VCC2=5V * Input timing voltage : VIL=0.8V, VIH=2.0V * Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.8 Timing Diagram (7)
Rev.2.10 Nov. 07, 2003 page 50
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(For 1- or 2-wait setting, external area access and multiplex bus selection) Read timing
BCLK td(BCLK-CS)
25ns.max tcyc
th(RD-CS)
(0.5 X tcyc-10)ns.min
th(BCLK-CS)
4ns.min
CSi td(AD-ALE)
(0.5 X tcyc-25)ns.min
th(ALE-AD)
(0.5 X tcyc-15)ns.min
ADi /DBi
Address
tdZ(RD-AD)
8ns.max
Data input tac3(RD-DB) tsu(DB-RD)
40ns.min
Address th(RD-DB)
0ns.min
(1.5 X tcyc-45)ns.max
td(AD-RD) td(BCLK-AD)
25ns.max 0ns.min
th(BCLK-AD)
4ns.min
ADi BHE
td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-RD)
25ns.max
th(BCLK-RD)
0ns.min
RD
Write timing
BCLK td(BCLK-CS)
25ns.max tcyc
th(WR-CS)
(0.5 X tcyc-10)ns.min
th(BCLK-CS)
4ns.min
CSi td(BCLK-DB)
40ns.max
th(BCLK-DB)
4ns.min
ADi /DBi td(AD-ALE)
Address
Data output td(DB-WR)
(1.5 X tcyc-40)ns.min
Address th(WR-DB)
(0.5 X tcyc-10)ns.min
(0.5 X tcyc-25)ns.min
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
td(AD-WR)
0ns.min
th(WR-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-WR)
25ns.max
th(BCLK-WR)
0ns.min
WR,WRL, WRH 1 f(BCLK)
tcyc=
Measuring conditions * VCC1=VCC2=5V * Input timing voltage : VIL=0.8V, VIH=2.0V * Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.9 Timing Diagram (8)
Rev.2.10 Nov. 07, 2003 page 51
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(For 3-wait setting, external area access and multiplex bus selection) Read timing
tcyc BCLK th(RD-CS) td(BCLK-CS)
25ns.max (0.5 X tcyc-10)ns.min
th(BCLK-CS)
4ns.min
CSi td(AD-ALE)
(0.5 X tcyc-25)ns.min
th(ALE-AD)
(0.5 X tcyc-15)ns.min
ADi /DBi ADi BHE
(no multiplex)
25ns.max
Address td(BCLK-AD) tdZ(RD-AD) td(AD-RD)
0ns.min 8ns.max
Data input
th(RD-DB) tac3(RD-DB)
(2.5 X tcyc-45)ns.max
tsu(DB-RD)
40ns.min
0ns.min
th(BCLK-AD)
4ns.min
td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-RD)
25ns.max
th(BCLK-RD)
0ns.min
RD
Write timing
tcyc BCLK th(WR-CS) td(BCLK-CS)
25ns.max (0.5 X tcyc-10)ns.min
th(BCLK-CS)
4ns.min
CSi td(BCLK-DB)
40ns.max
th(BCLK-DB)
4ns.min
ADi /DBi td(AD-ALE)
Address
Data output td(DB-WR)
(2.5 X tcyc-40)ns.min
(0.5 X tcyc-25)ns.min
th(WR-DB)
(0.5 X tcyc-10)ns.min
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
ADi BHE
(no multiplex)
td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(WR-AD) td(AD-WR)
(0.5 X tcyc-10)ns.min 0ns.min
ALE
td(BCLK-WR) WR, WRL WRH
25ns.max
th(BCLK-WR)
0ns.min
tcyc=
1 f(BCLK)
Measuring conditions * VCC1=VCC2=5V * Input timing voltage : VIL=0.8V, VIH=2.0V * Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.10 Timing Diagram (9)
Rev.2.10 Nov. 07, 2003 page 52
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Table 5.30 Electrical Characteristics (1)
Symbol
VOH
Parameter
HIGH output P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, voltage P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
Measuring condition
IOH=-1mA IOH=-1mA (2) IOH=-0.1mA IOH=-50A With no load applied With no load applied IOL=1mA IOL=1mA (2) IOL=0.1mA IOL=50A With no load applied With no load applied
Min.
VCC1-0.5 VCC2-0.5 VCC1-0.5 VCC1-0.5
Standard Max. Typ.
VCC1
Unit
V VCC2 VCC1 VCC1 2 .5 1.6 0 .5 V 0 .5 0 .5 0 .5 0 0 V V V V
VOH
HIGH output voltage HIGH output voltage LOW output voltage
XOUT XCOUT
HIGHPOWER LOWPOWER HIGHPOWER LOWPOWER
VOL
P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
VOL
LOW output voltage LOW output voltage Hysteresis
XOUT XCOUT
HIGHPOWER LOWPOWER HIGHPOWER LOWPOWER
VT+-VT-
HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT5, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 to SDA2, CLK0 to CLK4, TA0OUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3, SIN4 RESET XIN P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 XIN XCIN At stop mode
0 .2
0 .8
V
VT+-VTVT+-VT-
Hysteresis Hysteresis HIGH input current
0 .2 0 .2
(0.7)
1 .8 0 .8
V V
IIH
VI=3V
4 .0
A
LOW input current IIL
VI=0V
-4.0
A
RPULLUP
Pull-up resistance
VI=0V
50
100 3.0 25
500
k M M V
RfXIN RfXCIN VRAM
Feedback resistance Feedback resistance RAM retention voltage
2 .0
NOTES: 1. Referenced to VCC1=VCC2=2.7 to 3.3V, VSS=0V at Topr = -20 to 85 C / -40 to 85 C, f(BCLK)=10MHz unless otherwise specified. 2. VCC1 for the port P6 to P11 and P14, and VCC2 for the port P0 to P5 and P12 to P13. 3. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 53
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Table 5.31 Electrical Characteristics (2) (1)
Symbol Parameter
In single-chip mode, the output pins are open and other pins are VSS
Mask ROM
Measuring condition
f(BCLK)=10MHz, No division No division, Ring oscillation
Flash memory
Min.
Standard Typ.
8 1 8 1 .8 12 22 25
Max.
11
Unit
mA mA
f(BCLK)=10MHz, No division No division, Ring oscillation
13
mA mA mA mA A
Flash memory Program Flash memory Erase Mask ROM
f(BCLK)=10MHz, Vcc1=3.0V f(BCLK)=10MHz, Vcc1=3.0V f(XCIN)=32kHz, Low power dissipation mode, ROM (3) f(BCLK)=32kHz, Low power dissipation mode, RAM (3) f(BCLK)=32kHz, Low power dissipation mode, Flash memory (3) Ring oscillation, Wait mode f(BCLK)=32kHz, Wait mode (2),
ICC
Power supply current (VCC1=2.7 to 3.6V)
Flash memory
25
A
420
A A A
45 6.0
Mask ROM Flash memory
Oscillation capacity High
f(BCLK)=32kHz, Wait mode (2),
Oscillation capacity Low
1.8 0 .7 0.6 0.4 0 .9 3.0 4 2 4
A A A A A
Stop mode, Topr=25C Idet4 Idet3 Idet2 Voltage down detection dissipation current Reset level detection dissipation current (4) RAM retention limit detection dissipation current (4)
(4)
NOTES: 1. Referenced to VCC1=VCC2=2.7 to 3.3V, VSS=0V at Topr = -20 to 85 C / -40 to 85 C, f(BCLK)=10MHz unless otherwise specified. 2. With one timer operated using fC32. 3. This indicates the memory in which the program to be executed exists. 4. Idet is dissipation current when the following bit is set to "1" (detection circuit enabled). Idet4: VC27 bit of VCR2 register Idet3: VC26 bit of VCR2 register Idet2: VC25 bit of VCR2 register
Rev.2.10 Nov. 07, 2003 page 54
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Timing Requirements (VCC1 = VCC2 = 3V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified) Table 5.32 External Clock Input (XIN input) Symbol
tc tw(H) tw(L) tr tf
Parameter
External clock input cycle time External clock input HIGH pulse width External clock input LOW pulse width External clock rise time External clock fall time
Standard Min. Max.
100 40 40 18 18
Unit
ns ns ns ns ns
Table 5.33 Memory Expansion and Microprocessor Modes
Symbol
tac1(RD-DB) tac2(RD-DB) tac3(RD-DB) tsu(DB-RD) tsu(RDY-BCLK ) tsu(HOLD-BCLK ) th(RD-DB) th(BCLK -RDY) th(BCLK-HOLD )
Parameter
Data input access time (for setting with no wait) Data input access time (for setting with wait) Data input access time (when accessing multiplex bus area) Data input setup time RDY input setup time HOLD input setup time Data input hold time RDY input hold time HOLD input hold time
Standard Min. Max.
(Note 1) (Note 2) (Note 3)
50 40 50 0 0 0
Unit
ns ns ns ns ns ns ns ns ns
NOTES: 1. Calculated according to the BCLK frequency as follows:
0.5 X 109 f(BCLK) - 60 [ns]
2. Calculated according to the BCLK frequency as follows:
(n-0.5) X 109 - 60 f(BCLK) [ns]
n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.
3. Calculated according to the BCLK frequency as follows:
(n-0.5) X 109 - 60 f(BCLK) [ns]
n is "2" for 2-wait setting, "3" for 3-wait setting.
Rev.2.10 Nov. 07, 2003 page 55
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Timing Requirements (VCC1 = VCC2 = 3V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified) Table 5.34 Timer A Input (Counter Input in Event Counter Mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Max. Min. 150 60 60 Unit ns ns ns
Table 5.35 Timer A Input (Gating Input in Timer Mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. Max. 600 300 300 Unit ns ns ns
Table 5.36 Timer A Input (External Trigger Input in One-shot Timer Mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Min. Standard Max. Unit ns ns ns
300 150 150
Table 5.37 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)
Symbol tw(TAH) tw(TAL) TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. Max. 150 150 Unit ns ns
Table 5.38 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)
Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP-TIN) th(TIN-UP) TAiOUT input cycle time TAiOUT input HIGH pulse width TAiOUT input LOW pulse width TAiOUT input setup time TAiOUT input hold time Parameter Standard Min. Max. 3000 1500 1500 600 600 Unit ns ns ns ns ns
Table 5.39 Timer A Input (Two-phase Pulse Input in Event Counter Mode)
Symbol tc(TA) tsu(TAIN-TAOUT) tsu(TAOUT-TAIN) TAiIN input cycle time TAiOUT input setup time TAiIN input setup time Parameter Standard Min. Max. 2 500 500 Unit s ns ns
Rev.2.10 Nov. 07, 2003 page 56
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Timing Requirements (VCC1 = VCC2 = 3V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified) Table 5.40 Timer B Input (Counter Input in Event Counter Mode)
Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Parameter TBiIN input cycle time (counted on one edge) TBiIN input HIGH pulse width (counted on one edge) TBiIN input LOW pulse width (counted on one edge) TBiIN input cycle time (counted on both edges) TBiIN input HIGH pulse width (counted on both edges) TBiIN input LOW pulse width (counted on both edges) Standard Min. 150 60 60 300 120 120 Max. Unit ns ns ns ns ns ns
Table 5.41 Timer B Input (Pulse Period Measurement Mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input HIGH pulse width TBiIN input LOW pulse width Parameter Standard Min. 600 300 300 Max. Unit ns ns ns
Table 5.42 Timer B Input (Pulse Width Measurement Mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input HIGH pulse width TBiIN input LOW pulse width Parameter Standard Min. 600 300 300 Max. Unit ns ns ns
Table 5.43 A-D Trigger Input
Symbol tc(AD) tw(ADL) Parameter ADTRG input cycle time (trigger able minimum) ADTRG input LOW pulse width Standard Min. 1500 200 Max. Unit ns ns
Table 5.44 Serial I/O
Symbol tc(CK) tw(CKH) tw(CKL) td(C-Q) th(C-Q) tsu(D-C) th(C-D) CLKi input cycle time CLKi input HIGH pulse width CLKi input LOW pulse width TXDi output delay time TXDi hold time RXDi input setup time RXDi input hold time
_______
Parameter
Standard Min. 300 150 150 160 0 50 90 Max.
Unit ns ns ns ns ns ns ns
Table 5.45 External Interrupt INTi Input
Symbol tw(INH) tw(INL) INTi input HIGH pulse width INTi input LOW pulse width Parameter Standard Min. 380 380 Max. Unit ns ns
Rev.2.10 Nov. 07, 2003 page 57
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Switching Characteristics (VCC1 = VCC2 = 3V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified) Table 5.46 Memory Expansion, Microprocessor Modes (for setting with no wait)
Symbol
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) td(BCLK-ALE) th(BCLK-ALE) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) th(WR-DB) td(BCLK-HLDA)
Parameter
Address output delay time Address output hold time (refers to BCLK) Address output hold time (refers to RD) Address output hold time (refers to WR) Chip select output delay time Chip select output hold time (refers to BCLK) ALE signal output delay time ALE signal output hold time RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (refers to BCLK) Data output hold time (refers to BCLK)(3) Data output delay time (refers to WR) Data output hold time (refers to WR)(3) HLDA output delay time
Measuring condition
Standard Min. Max.
30 4 0 (Note 2) 30 4 25
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
See Figure 5.11
-4 30 0 30 0 40 4 (Note 1) (Note 2) 40
NOTES: 1. Calculated according to the BCLK frequency as follows:
0.5 X 109 f(BCLK) - 40 [ns]
f(BCLK) is 12.5MHz or less.
2. Calculated according to the BCLK frequency as follows:
0.5 X 109 f(BCLK) - 10 [ns]
3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1 - VOL / VCC2) by a circuit of the right figure. For example, when VOL = 0.2VCC2, C = 30pF, R = 1k, hold time of output "L" level is t = - 30pF X 1k X ln (1 - 0.2VCC2 / VCC2) = 6.7ns.
R DBi C
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 30pF
Figure 5.11 Ports P0 to P14 Measurement Circuit
Rev.2.10 Nov. 07, 2003 page 58 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Switching Characteristics (VCC1 = VCC2 = 3V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC unless otherwise specified)
Table 5.47 Memory expansion and Microprocessor Modes (for 1- to 3-wait setting and external area access)
Symbol
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) td(BCLK-ALE) th(BCLK-ALE) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR) th(WR-DB) td(BCLK-HLDA)
Parameter
Address output delay time Address output hold time (refers to BCLK) Address output hold time (refers to RD) Address output hold time (refers to WR) Chip select output delay time Chip select output hold time (refers to BCLK) ALE signal output delay time ALE signal output hold time RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (refers to BCLK) Data output hold time (refers to BCLK)(3) Data output delay time (refers to WR) Data output hold time (refers to WR)(3) HLDA output delay time
Measuring condition
Standard Min. Max.
30 4 0 (Note 2) 30 4 25
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
See Figure 5.11
-4 30 0 30 0 40 4 (Note 1) (Note 2) 40
NOTES: 1. Calculated according to the BCLK frequency as follows:
(n-0.5) X 109 - 40 f(BCLK) [ns]
n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting. When n=1, f(BCLK) is 12.5MHz or less.
2. Calculated according to the BCLK frequency as follows:
0.5 X 109 - 10 f(BCLK) [ns]
3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1 - VOL / VCC2) by a circuit of the right figure. For example, when VOL = 0.2VCC2, C = 30pF, R = 1k, hold time of output "L" level is t = - 30pF X 1k X ln (1 - 0.2VCC2 / VCC2) = 6.7ns.
R DBi C
Rev.2.10 Nov. 07, 2003 page 59
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Switching Characteristics (VCC1 = VCC2 = 3V, VSS = 0V, at Topr = - 20 to 85oC / - 40 to 85oC, unless otherwise specified)
Table 5.48 Memory expansion and Microprocessor Modes (for 2- to 3-wait setting, external area access and multiplex bus selection)
Symbol
td(BCLK-AD) th(BCLK-AD) th(RD-AD) th(WR-AD) td(BCLK-CS) th(BCLK-CS) th(RD-CS) th(WR-CS) td(BCLK-RD) th(BCLK-RD) td(BCLK-WR) th(BCLK-WR) td(BCLK-DB) th(BCLK-DB) td(DB-WR)
Parameter
Address output delay time Address output hold time (refers to BCLK) Address output hold time (refers to RD) Address output hold time (refers to WR) Chip select output delay time Chip select output hold time (refers to BCLK) Chip select output hold time (refers to RD) Chip select output hold time (refers to WR) RD signal output delay time RD signal output hold time WR signal output delay time WR signal output hold time Data output delay time (refers to BCLK) Data output hold time (refers to BCLK) Data output delay time (refers to WR)
Measuring condition
Standard Min. Max.
50 4 (Note 1) (Note 1) 50 4 (Note 1) (Note 1)
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
See Figure 5.11
40 0 40 0 50 4 (Note 2) (Note 1) 40 25 -4 (Note 3) (Note 4) 0 0 8
th(WR-DB) Data output hold time (refers to WR) td(BCLK-HLDA) HLDA output delay time td(BCLK-ALE) ALE signal output delay time (refers to BCLK) th(BCLK-ALE) ALE signal output hold time (refers to BCLK) td(AD-ALE) ALE signal output delay time (refers to Address) th(ALE-AD) ALE signal output hold time (refers to Adderss) td(AD-RD) td(AD-WR) tdZ(RD-AD) RD signal output delay from the end of Address WR signal output delay from the end of Address Address output floating start time
NOTES: 1. Calculated according to the BCLK frequency as follows:
0.5 X 10 9 f(BCLK) -10 [ns]
2. Calculated according to the BCLK frequency as follows:
(n-0.5) X 10 9 f(BCLK) -50
n is "2" for 2-wait setting, "3" for 3-wait setting.
[ns]
3. Calculated according to the BCLK frequency as follows:
0.5 X 10 9 f(BCLK) -40 [ns]
4. Calculated according to the BCLK frequency as follows:
0.5 X 10 9 f(BCLK) -15 [ns]
Rev.2.10 Nov. 07, 2003 page 60
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
XIN input tr tw(H) tf tc tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) TAiOUT input (Up/down input) During event counter mode TAiIN input (When count on falling edge is selected) TAiIN input (When count on rising edge is selected) Two-phase pulse input in event counter mode TAiIN input tsu(TAIN-TAOUT) TAiOUT input tsu(TAOUT-TAIN) tsu(TAIN-TAOUT) tsu(TAOUT-TAIN) tw(L)
th(TIN-UP)
tsu(UP-TIN)
tc(TA)
tc(TB) tw(TBH) TBiIN input tw(TBL) tc(AD) tw(ADL) ADTRG input
Figure 5.12 Timing Diagram (1)
Rev.2.10 Nov. 07, 2003 page 61 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
tc(CK) tw(CKH) CLKi tw(CKL) TXDi td(C-Q) RXDi tw(INL) INTi input tw(INH) tsu(D-C) th(C-D) th(C-Q)
Figure 5.13 Timing Diagram (2)
Rev.2.10 Nov. 07, 2003 page 62 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(Effective for setting with wait)
BCLK RD (Separate bus) WR, WRL, WRH (Separate bus) RD (Multiplexed bus) WR, WRL, WRH (Multiplexed bus) RDY input
tsu(RDY-BCLK) th(BCLK-RDY)
(Common to setting with wait and setting without wait)
BCLK
tsu(HOLD-BCLK) th(BCLK-HOLD)
HOLD input
HLDA output
td(BCLK-HLDA)
td(BCLK-HLDA)
Hi-Z
P0, P1, P2, P3, P4, P5_0 to P5_2 (1)
NOTES: 1. These pins are set to high-impedance regardless of the input level of the BYTE pin, PM06 bit in PM0 register and PM11 bit in PM1 register. Measuring conditions : * VCC1=VCC2=3V * Input timing voltage : Determined with VIL=0.6V, VIH=2.4V * Output timing voltage : Determined with VOL=1.5V, VOH=1.5V
Figure 5.14 Timing Diagram (3)
Rev.2.10 Nov. 07, 2003 page 63
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(For setting with no wait) Read timing
BCLK td(BCLK-CS)
30ns.max
th(BCLK-CS)
4ns.min
CSi tcyc
td(BCLK-AD)
30ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
30ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
0ns.min
ALE td(BCLK-RD)
30ns.max
th(BCLK-RD)
0ns.min
RD tac1(RD-DB)
(0.5 X tcyc-60)ns.max
DBi
Hi-Z
tsu(DB-RD)
50ns.min
th(RD-DB)
0ns.min
Write timing
BCLK td(BCLK-CS)
30ns.max
th(BCLK-CS)
4ns.min
CSi tcyc
td(BCLK-AD)
30ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
30ns.max
th(BCLK-ALE)
-4ns.min
th(WR-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-WR)
30ns.max
th(BCLK-WR)
0ns.min
WR,WRL, WRH td(BCLK-DB)
40ns.max Hi-Z
th(BCLK-DB)
4ns.min
DBi td(DB-WR) th(WR-DB)
(0.5 X tcyc-10)ns.min
tcyc= f(BCLK)
Measuring conditions * VCC1=VCC2=3V * Input timing voltage : VIL=0.6V, VIH=2.4V * Output timing voltage : VOL=1.5V, VOH=1.5V
1
(0.5 X tcyc-40)ns.min
Figure 5.15 Timing Diagram (4)
Rev.2.10 Nov. 07, 2003 page 64 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(for 1-wait setting and external area access) Read timing
BCLK td(BCLK-CS)
30ns.max
th(BCLK-CS)
4ns.min
CSi tcyc
td(BCLK-AD)
30ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
30ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
0ns.min
ALE td(BCLK-RD)
30ns.max
th(BCLK-RD)
0ns.min
RD tac2(RD-DB)
(1.5 X tcyc-60)ns.max
DBi
Hi-Z
th(RD-DB) tsu(DB-RD)
50ns.min 0ns.min
Write timing
BCLK td(BCLK-CS)
30ns.max
th(BCLK-CS)
4ns.min
CSi tcyc
td(BCLK-AD)
30ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
30ns.max
th(BCLK-ALE)
-4ns.min
th(WR-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-WR)
30ns.max
th(BCLK-WR)
0ns.min
WR,WRL, WRH td(BCLK-DB)
40ns.max Hi-Z
th(BCLK-DB)
4ns.min
DBi td(DB-WR)
(0.5 X tcyc-40)ns.min
th(WR-DB)
(0.5 X tcyc-10)ns.min
tcyc=
1 f(BCLK)
Measuring conditions * VCC1=VCC2=3V * Input timing voltage : VIL=0.6V, VIH=2.4V * Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.16 Timing Diagram (5)
Rev.2.10 Nov. 07, 2003 page 65
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(for 2-wait setting and external area access) Read timing
tcyc BCLK td(BCLK-CS)
30ns.max
th(BCLK-CS)
4ns.min
CSi td(BCLK-AD)
30ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
30ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
0ns.min
ALE td(BCLK-RD)
30ns.max
th(BCLK-RD)
0ns.min
RD tac2(RD-DB)
(2.5 X tcyc-60)ns.max
DBi
Hi-Z
tsu(DB-RD)
50ns.min
th(RD-DB)
0ns.min
Write timing
tcyc BCLK td(BCLK-CS)
30ns.max
th(BCLK-CS)
4ns.min
CSi td(BCLK-AD)
30ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
30ns.max
th(WR-AD) th(BCLK-ALE)
-4ns.min (0.5 X tcyc-10)ns.min
ALE td(BCLK-WR)
30ns.max
th(BCLK-WR)
0ns.min
WR, WRL WRH td(BCLK-DB)
40ns.max
th(BCLK-DB)
4ns.min
DBi
Hi-Z
td(DB-WR)
(1.5 X tcyc-40)ns.min
th(WR-DB)
(0.5 X tcyc-10)ns.min
tcyc=
1 f(BCLK)
Measuring conditions * VCC1=VCC2=3V * Input timing voltage : VIL=0.6V, VIH=2.4V * Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.17 Timing Diagram (6)
Rev.2.10 Nov. 07, 2003 page 66 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(for 3-wait setting and external area access) Read timing
tcyc BCLK td(BCLK-CS)
30ns.max
th(BCLK-CS)
4ns.min
CSi td(BCLK-AD)
30ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
30ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
0ns.min
ALE td(BCLK-RD)
30ns.max
th(BCLK-RD)
0ns.min
RD tac2(RD-DB)
(3.5 X tcyc-60)ns.max
DBi
Hi-Z
tsu(DB-RD)
50ns.min
th(RD-DB)
0ns.min
Write timing
tcyc BCLK td(BCLK-CS)
30ns.max
th(BCLK-CS)
4ns.min
CSi td(BCLK-AD)
30ns.max
th(BCLK-AD)
4ns.min
ADi BHE td(BCLK-ALE)
30ns.max
th(BCLK-ALE)
-4ns.min
th(WR-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-WR)
30ns.max
th(BCLK-WR)
0ns.min
WR, WRL WRH td(BCLK-DB)
40ns.max
th(BCLK-DB)
4ns.min
DBi
Hi-Z
td(DB-WR)
(2.5 X tcyc-40)ns.min
th(WR-DB)
(0.5 X tcyc-10)ns.min
tcyc=
1 f(BCLK)
Measuring conditions * VCC1=VCC2=3V * Input timing voltage : VIL=0.6V, VIH=2.4V * Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.18 Timing Diagram (7)
Rev.2.10 Nov. 07, 2003 page 67
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(For 2-wait setting, external area access and multiplex bus selection) Read timing
BCLK td(BCLK-CS)
40ns.max
tcyc
th(RD-CS)
(0.5 X tcyc-10)ns.min
th(BCLK-CS)
4ns.min
CSi td(AD-ALE)
(0.5 X tcyc-40)ns.min
th(ALE-AD)
(0.5 X tcyc-15)ns.min
ADi /DBi
Address
tdZ(RD-AD)
8ns.max
Data input tac3(RD-DB) tSU(DB-RD)
50ns.min
Address th(RD-DB)
0ns.min
(1.5 X tcyc-60)ns.max
td(AD-RD) td(BCLK-AD)
40ns.max 0ns.min
th(BCLK-AD)
4ns.min
ADi BHE
td(BCLK-ALE)
40ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-RD)
40ns.max
th(BCLK-RD)
0ns.min
RD
Write timing
BCLK td(BCLK-CS)
40ns.max
tcyc
th(WR-CS)
(0.5 X tcyc-10)ns.min
th(BCLK-CS)
4ns.min
CSi td(BCLK-DB)
50ns.max
th(BCLK-DB)
4ns.min
ADi /DBi td(AD-ALE)
Address
Data output td(DB-WR)
(1.5 X tcyc-50)ns.min
Address th(WR-DB)
(0.5 X tcyc-10)ns.min
(0.5 X tcyc-40)ns.min
td(BCLK-AD)
40ns.max
th(BCLK-AD)
4ns.min
ADi BHE
td(BCLK-ALE)
40ns.max
th(BCLK-ALE)
-4ns.min
td(AD-WR)
0ns.min
th(WR-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-WR)
40ns.max
th(BCLK-WR)
0ns.min
WR,WRL, WRH
tcyc=
1 f(BCLK)
Measuring conditions * VCC1=VCC2=3V * Input timing voltage : VIL=0.6V, VIH=2.4V * Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.19 Timing Diagram (8)
Rev.2.10 Nov. 07, 2003 page 68 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(For 3-wait setting, external area access and multiplex bus selection) Read timing
tcyc BCLK th(RD-CS) td(BCLK-CS)
40ns.max (0.5 X tcyc-10)ns.min
th(BCLK-CS)
6ns.min
CSi td(AD-ALE)
(0.5 X tcyc-40)ns.min
th(ALE-AD)
(0.5 X tcyc-15)ns.min Data input
ADi /DBi ADi BHE
(No multiplex) 40ns.max
Address td(BCLK-AD) tdZ(RD-AD) td(AD-RD)
0ns.min 8ns.max
th(RD-DB) tac3(RD-DB)
(2.5 X tcyc-60)ns.max
tsu(DB-RD)
50ns.min
0ns.min
th(BCLK-AD)
4ns.min
td(BCLK-ALE)
40ns.max
th(BCLK-ALE)
-4ns.min
th(RD-AD)
(0.5 X tcyc-10)ns.min
ALE td(BCLK-RD)
40ns.max
th(BCLK-RD)
0ns.min
RD
Write timing
tcyc BCLK th(WR-CS) td(BCLK-CS)
40ns.max (0.5 X tcyc-10)ns.min
th(BCLK-CS)
4ns.min
CSi td(BCLK-DB)
50ns.max
th(BCLK-DB)
4ns.min
ADi /DBi td(AD-ALE)
Address
Data output td(DB-WR)
(2.5 X tcyc-50)ns.min
(0.5 X tcyc-40)ns.min
th(WR-DB)
(0.5 X tcyc-10)ns.min
td(BCLK-AD)
40ns.max
th(BCLK-AD)
4ns.min
ADi BHE
(No multiplex)
td(BCLK-ALE)
40ns.max
th(BCLK-ALE)
-4ns.min
th(WR-AD) td(AD-WR)
(0.5 X tcyc-10)ns.min 0ns.min
ALE
td(BCLK-WR) WR, WRL WRH 1 f(BCLK)
40ns.max
th(BCLK-WR)
0ns.min
tcyc=
Measuring conditions * VCC1=VCC2=3V * Input timing voltage : VIL=0.6V, VIH=2.4V * Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.20 Timing Diagram (9)
Rev.2.10 Nov. 07, 2003 page 69
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
5.2 Electrical Characteristics (M16C/62PT)
Table 5.49 Absolute Maximum Ratings
Symbol
VCC1, VCC2 VCC2 AVCC Supply voltage Supply voltage
Parameter
Condition
VCC1=AVCC VCC2 VCC1=AVCC
Rated value
-0.3 to 6.5 -0.3 to VCC1+0.1 -0.3 to 6.5
Unit
V V V
Analog supply voltage Input voltage RESET, CNVSS, BYTE, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, VREF, XIN P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 P7_0, P7_1 Output voltage P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11 0 to P11_7, P14_0, P14_1, XOUT P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 P7_0, P7_1
-0.3 to VCC1+0.3 (1)
V
VI
-0.3 to VCC2+0.3 (1) -0.3 to 6.5
V
V
-0.3 to VCC1+0.3 (1)
V
VO
-0.3 to VCC2+0.3 (1)
V
-0.3 to 6.5 -40 C < Topr 85 C -40 C < Topr 125 C 300 200 -40 to 85 / -40 to 125 (2)
V mW
Pd Topr
Power dissipation Operating ambient temperature When the microcomputer is operating Flash program erase
C 0 to 60 -65 to 150 C
Tstg
Storage temperature
NOTES : 1. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version. 2. T version = -40 to 85 C, V version = -40 to 125 C.
Rev.2.10 Nov. 07, 2003 page 70 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
Table 5.50 Recommended Operating Conditions (1)
Symbol
VCC1, VCC2 Supply voltage(VCC1=VCC2) AVcc Analog supply voltage Vss Supply voltage AVss Analog supply voltage HIGH input voltage VIH P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode) P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE P7_0 , P7_1 LOW input voltage VIL P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode) P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE IOH (peak) HIGH peak output current P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 VCC1=4.0 to 5.5V 0 32.768 0.5 VCC1=4.0 to 5.5V VCC1=5.0V 10 0 1 0.8VCC1 0 0 0 6.5 0.2VCC2 0.2VCC2 0.2VCC1 V V V V 0.8VCC2 0.8VCC2 0.8VCC1
Parameter
Min.
4.0
Standard Typ. Max.
5.0 VCC1 0 0 VCC2 VCC2 VCC1 5.5
Unit
V V V V V V V
-10.0
mA
IOH (avg)
HIGH average output current
-5.0
mA
IOL (peak)
LOW peak output current
10.0
mA
IOL (avg)
LOW average output current
5.0
mA
f (XIN) f (XCIN) f (Ring) f (PLL) f (BCLK) tSU(PLL)
Main clock input oscillation frequency Sub-clock oscillation frequency Ring oscillation frequency PLL clock oscillation frequency (4) CPU operation clock PLL frequency synthesizer stabilization wait time
16 50 2 24 24 20
MHz kHz MHz MHz MHz ms
NOTES: 1. Referenced to VCC1 = VCC2 = 4.7 to 5.5V at Topr = -40 to 85 C / -40 to 125 C unless otherwise specified. T version = -40 to 85 C, V version = -40 to 125 C. 2. The mean output current is the mean value within 100ms. 3. The total IOL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14_0 and P14_1 must be 80mA max. The total IOL(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40mA max. As for 80-pin version, the total IOL(peak) for all ports and IOH(peak) must be 80mA. max. due to one VCC and one VSS. 4. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 71
of 84
M16C/62 Group (M16C/62P, M16C/62PT) Table 5.51 A-D Conversion Characteristics (1)
Symbol
- Resolution
5. Electrical Characteristics (M16C/62PT)
Parameter
Measuring condition
VREF =VCC1 VREF= VCC1= 5V AN0 to AN7 input AN0_0 to AN0_7 input AN2_0 to AN2_7 input ANEX0, ANEX1 input External operation amp connection mode
Standard Unit Min. Typ. Max.
10 Bits
INL
Integral nonlinearity error
3 7 2 3
LSB
10 bit
LSB LSB LSB
8 bit
-
Absolute accuracy
10 bit
VREF =VCC1=3.3V VREF= AN0 to AN7 input VCC1= AN0_0 to AN0_7 input AN2_0 to AN2_7 input 5V ANEX0, ANEX1 input External operation amp connection mode
7 2 3 1 3 3 40
LSB LSB k LSB LSB LSB k s s s V V
8 bit - DNL - - RLADDER tCONV tCONV tSAMP VREF VIA Tolerance level impedance Differential non-linearity error Offset error Gain error Ladder resistance Conversion time(10bit), Sample & hold function available Conversion time(8bit), Sample & hold function available Sampling time Reference voltage Analog input voltage
VREF =VCC1=3.3V
VREF =VCC1 VREF =VCC1=5V, oAD=12MHz VREF =VCC1=5V, oAD=12MHz
10 2.75 2.33 0.25 2.0 0
VCC1 VREF
NOTES: 1. Referenced to VCC1=AVCC=VREF=4.0 to 5.5V, VSS=AVSS=0V at Topr = -40 to 85 C / -40 to 125 C unless otherwise specified. T version = -40 to 85 C, V version = -40 to 125 C. 2. AD operation clock frequency (oAD frequency) must be 12 MHz or less. 3. A case without sample & hold function turn oAD frequency into 250 kHz or more in addition to a limit of Note 2. A case with sample & hold function turn oAD frequency into 1MHz or more in addition to a limit of Note 2.
Table 5.52 D-A Conversion Characteristics (1)
Symbol
- - tsu RO IVREF
Parameter Resolution Absolute accuracy Setup time Output resistance Reference power supply input current
Measuring condition
Standard Min. Typ. Max.
8 1.0 3 20 1.5
Unit
Bits % s k mA
4 (Note 2)
10
NOTES : 1. Referenced to VCC1=VREF=4.0 to 5.5V, VSS=AVSS=0V at Topr = -40 to 85 C / -40 to 125 C unless otherwise specified. T version=-40 to 85 C, V version=-40 to 125 C 2. This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "00h". The A-D converter's ladder resistance is not included. Also, when D-A register contents are not "00h", the current IVREF always flows even though Vref may have been set to be unconnected by the A-D control register.
Rev.2.10 Nov. 07, 2003 page 72 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
Table 5.53 Flash Memory Version Electrical Characteristics (1) for 100 cycle products
Symbol
-
Parameter
Program and erase endurance (3) Word program time (VCC1=5.0V, Topr=25C) Lock bit program time Block erase time (VCC1=5.0V, Topr=25 C) 4K bytes block 8K bytes block 32K bytes block 64K bytes block
Min.
100
Standard Typ.
25 25 0.3 0.3 0.5 0.8
Max.
200 200 4 4 4 4 4Xn 15
Unit
cycle s s s s s s s s year
tPS -
Erase all unlocked blocks time Data hold time (5)
(2)
Flash memory circuit stabilization wait time 10
Table 5.54 Flash Memory Version Electrical Characteristics (6) for 10,000 cycle products (Block A and Block 1 (7))
Symbol
tPS -
Parameter
Program and erase endurance (3, 8, 9) Word program time (VCC1=5.0V, Topr=25C) Lock bit program time Block erase time (VCC1=5.0V, Topr=25 C) 4K bytes block
Min.
10,000 (4)
Standard Typ.
25 25 0.3
Max.
Unit
cycle s s s
Flash memory circuit stabilization wait time Data hold time
(5)
15 10
s year
NOTES : 1. Referenced to VCC1=4.5 to 5.5V at Topr = 0 to 60 C unless otherwise specified. 2. n denotes the number of block erases. 3. Program and Erase Endurance refers to the number of times a block erase can be performed. If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times. For example, if a 4K bytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block. (Rewrite prohibited) 4. Maximum number of E/W cycles for which operation is guaranteed. 5. Topr = -40 to 85 C (T version) / -40 to 125 C (V version). 6. Referenced to VCC1 = 4.0 to 5.5V at Topr = -40 to 85 C (T version) / -40 to 125 C (V version) unless otherwise specified. 7. Table 5.55 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.54. 8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites, write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary. Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to track the total number of times erasure is used. 9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase command at least three times until erase error disappears. 10. Customers desiring E/W failure rate information should contact their Renesas technical support representative.
Table 5.55 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr = 0 to 60oC)
Flash program, erase voltage VCC1=5.0 0.5 V Flash read operation voltage VCC1=4.0 to 5.5 V
Rev.2.10 Nov. 07, 2003 page 73
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
Table 5.56 Power Supply Circuit Timing Characteristics
Symbol
td(P-R) td(R-S) td(W-S) td(M-L)
Parameter
Time for internal power supply stabilization during powering-on STOP release time Low power dissipation mode wait mode release time Time for internal power supply stabilization when main clock oscillation starts
Measuring condition
Min.
Standard Typ.
Max.
2 150 150 50
Unit
ms s s s
VCC1=4.0 to 5.5V
Interrupt for stop mode release CPU clock
td(R-S)
Rev.2.10 Nov. 07, 2003 page 74 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
Table 5.57 Electrical Characteristics (1)
Symbol
HIGH output voltage
Parameter
P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
HIGHPOWER
Measuring condition
IOH=-5mA IOH=-5mA (2) IOH=-200A IOH=-200A (2) IOH=-1mA IOH=-0.5mA With no load applied With no load applied IOL=5mA IOL=5mA (2) IOL=200A IOL=200A IOL=1mA IOL=0.5mA With no load applied With no load applied
(2)
Min.
VCC1-2.0 VCC2-2.0 VCC1-0.3 VCC2-0.3 VCC1-2.0 VCC1-2.0
Standard Typ.
Max.
VCC1
Unit
V
VOH
VCC2 VCC1 V VCC2 VCC1 VCC1 2.5 1.6 2 .0 V 2 .0 0.45 V 0.45 2 .0 2 .0 0 0 V V V V
VOH
HIGH output voltage
HIGH output voltage VOH HIGH output voltage LOW output voltage
XOUT
LOWPOWER
XCOUT
HIGHPOWER LOWPOWER
VOL
P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1 P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7 XOUT XCOUT
HIGHPOWER LOWPOWER
VOL
LOW output voltage
VOL
LOW output voltage LOW output voltage Hysteresis
HIGHPOWER LOWPOWER
VT+-VT-
HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INT0 to INT5, NMI, ADTRG, CTS0 to CTS2, SCL0 to SCL2, SDA0 TO SDA2, CLK0 to CLK4, TA0OUT to TA4OUT, KI0 to KI3, RXD0 to RXD2, SIN3, SIN4 RESET XIN P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1 XIN XCIN At stop mode
0.2
1 .0
V
VT+-VTVT+-VT-
Hysteresis Hysteresis HIGH input current
0.2 0.2
2.5 0 .8
V V
IIH
VI=5V
5 .0
A
LOW input current IIL
VI=0V
-5.0
A
RPULLUP
Pull-up resistance
VI=0V
30
50
170
k
RfXIN RfXCIN VRAM
Feedback resistance Feedback resistance RAM retention voltage
1.5 15 2 .0
M M V
NOTES: 1. Referenced to VCC1=VCC2=4.0 to 5.5V, VSS=0V at Topr = -40 to 85 C / -40 to 125 C, f(BCLK)=24MHz unless otherwise specified. T version is -40 = 85 C, V version = -40 to 125 C. 2. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 75
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
Table 5.58 Electrical Characteristics (2) (1)
Symbol Parameter
In single-chip mode, the output pins are open and other pins are VSS
Mask ROM
Measuring condition
f(BCLK)=24MHz, No division, PLL operation No division, Ring oscillation f(BCLK)=24MHz, No division, PLL operation No division, Ring oscillation
Flash memory Program Flash memory Erase Mask ROM
Min.
Standard Typ.
14 1 18 1 .8 15 25 25
Max.
20
Unit
mA mA
Flash memory
27
mA mA mA mA
f(BCLK)=10MHz, VCC1=5.0V f(BCLK)=10MHz, VCC1=5.0V f(XCIN)=32kHz, Low power dissipation mode, ROM (3) f(BCLK)=32kHz, Low power dissipation mode, RAM (3) f(BCLK)=32kHz Low power dissipation mode, Flash memory (3) Ring oscillation, Wait mode f(BCLK)=32kHz, Wait mode (2),
ICC
Power supply current (VCC1=4.0 to 5.5V)
Flash memory
A
25
A A A A
420
50 7 .5
Mask ROM Flash memory
Oscillation capacity High
f(BCLK)=32kHz, Wait mode (2),
Oscillation capacity Low
2 .0 0 .8 0.7 1.2 1 .1 3 .0 4 8 6
A A A A A
Stop mode, Topr=25C Idet4 Idet3 Idet2 Voltage down detection dissipation current (4) Reset area detection dissipation current (4) RAM retention limit detection dissipation current (4)
NOTES: 1. Referenced to VCC1=VCC2= 4.0 to 5.5V, VSS=0V at Topr = -20 to 85 C / -40 to 85 C, f(BCLK)=24MHz unless otherwise specified. T version = -40 to 85 C, V version = -40 to 125 C 2. With one timer operated using fC32. 3. This indicates the memory in which the program to be executed exists. 4. Idet is dissipation current when the following bit is set to "1" (detection circuit enabled). Idet4: VC27 bit of VCR2 register Idet3: VC26 bit of VCR2 register Idet2: VC25 bit of VCR2 register
Rev.2.10 Nov. 07, 2003 page 76 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
Timing Requirements (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = - 40 to 85oC (T version) / - 40 to 125oC (V version) unless otherwise specified)
Table 5.59 External Clock Input (XIN input) Symbol
tc tw(H) tw(L) tr tf
Parameter
External clock input cycle time External clock input HIGH pulse width External clock input LOW pulse width External clock rise time External clock fall time
Standard Min. Max.
62.5 25 25 15 15
Unit
ns ns ns ns ns
Rev.2.10 Nov. 07, 2003 page 77
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
Timing Requirements (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = - 40 to 85oC (T version) / - 40 to 125oC (V version) unless otherwise specified) Table 5.60 Timer A Input (Counter Input in Event Counter Mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. Max. 100 40 40 Unit ns ns ns
Table 5.61 Timer A Input (Gating Input in Timer Mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Parameter Standard Min. Max. 400 200 200 Unit ns ns ns
Table 5.62 Timer A Input (External Trigger Input in One-shot Timer Mode)
Symbol tc(TA) tw(TAH) tw(TAL) Parameter TAiIN input cycle time TAiIN input HIGH pulse width TAiIN input LOW pulse width Min. Standard Max. Unit ns ns ns
200 100 100
Table 5.63 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)
Symbol tw(TAH) tw(TAL) Parameter TAiIN input HIGH pulse width TAiIN input LOW pulse width Standard Max. Min. 100 100 Unit ns ns
Table 5.64 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)
Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP-TIN) th(TIN-UP) TAiOUT input cycle time TAiOUT input HIGH pulse width TAiOUT input LOW pulse width TAiOUT input setup time TAiOUT input hold time Parameter Standard Min. Max. 2000 1000 1000 400 400 Unit ns ns ns ns ns
Table 5.65 Timer A Input (Two-phase Pulse Input in Event Counter Mode)
Symbol tc(TA) tsu(TAIN-TAOUT) tsu(TAOUT-TAIN) TAiIN input cycle time TAiOUT input setup time TAiIN input setup time Parameter Standard Max. Min. 800 200 200 Unit ns ns ns
Rev.2.10 Nov. 07, 2003 page 78 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
Timing Requirements (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = - 40 to 85oC (T version) / - 40 to 125oC (V version) unless otherwise specified) Table 5.66 Timer B Input (Counter Input in Event Counter Mode)
Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Parameter TBiIN input cycle time (counted on one edge) TBiIN input HIGH pulse width (counted on one edge) TBiIN input LOW pulse width (counted on one edge) TBiIN input cycle time (counted on both edges) TBiIN input HIGH pulse width (counted on both edges) TBiIN input LOW pulse width (counted on both edges) Standard Min. 100 40 40 200 80 80 Max. Unit ns ns ns ns ns ns
Table 5.67 Timer B Input (Pulse Period Measurement Mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input HIGH pulse width TBiIN input LOW pulse width Parameter Standard Min. 400 200 200 Max. Unit ns ns ns
Table 5.68 Timer B Input (Pulse Width Measurement Mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input HIGH pulse width TBiIN input LOW pulse width Parameter Standard Min. 400 200 200 Max. Unit ns ns ns
Table 5.69 A-D Trigger Input
Symbol tc(AD) tw(ADL) Parameter ADTRG input cycle time (trigger able minimum) ADTRG input LOW pulse width Standard Min. 1000 125 Max. Unit ns ns
Table 5.70 Serial I/O
Symbol tc(CK) tw(CKH) tw(CKL) td(C-Q) th(C-Q) tsu(D-C) th(C-D) CLKi input cycle time CLKi input HIGH pulse width CLKi input LOW pulse width TXDi output delay time TXDi hold time RXDi input setup time RXDi input hold time
_______
Parameter
Standard Min. 200 100 100 80 0 30 90 Max.
Unit ns ns ns ns ns ns ns
Table 5.71 External Interrupt INTi Input
Symbol tw(INH) tw(INL) INTi input HIGH pulse width INTi input LOW pulse width Parameter Standard Min. 250 250 Max. Unit ns ns
Rev.2.10 Nov. 07, 2003 page 79
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
Switching Characteristics (VCC1 = VCC2 = 5V, VSS = 0V, at Topr = - 40 to 85oC (T version) / - 40 to 125oC (V version) unless otherwise specified)
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
30pF
Figure 5.21 Ports P0 to P10 Measurement Circuit
Rev.2.10 Nov. 07, 2003 page 80 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
XIN input tr tw(H) tf tc tc(TA) tw(TAH) TAiIN input tw(TAL) tc(UP) tw(UPH) TAiOUT input tw(UPL) TAiOUT input (Up/down input) During event counter mode TAiIN input
(When count on falling edge is selected)
tw(L)
th(TIN-UP)
tsu(UP-TIN)
TAiIN input
(When count on rising edge is selected)
Two-phase pulse input in event counter mode TAiIN input tsu(TAIN-TAOUT) TAiOUT input
tc(TA) tsu(TAIN-TAOUT) tsu(TAOUT-TAIN) tsu(TAOUT-TAIN)
tc(TB) tw(TBH) TBiIN input tw(TBL) tc(AD) tw(ADL) ADTRG input
Figure 5.22 Timing Diagram (1)
Rev.2.10 Nov. 07, 2003 page 81 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
tc(CK) tw(CKH) CLKi tw(CKL) TXDi td(C-Q) RXDi tw(INL) INTi input tw(INH) tsu(D-C) th(C-D) th(C-Q)
Figure 5.23 Timing Diagram (2)
Rev.2.10 Nov. 07, 2003 page 82
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
Package Dimensions
Package Dimensions
80P6S-A
EIAJ Package Code QFP80-P-1414-0.65
MMP
JEDEC Code Weight(g) 1.11 Lead Material Alloy 42
Plastic 80pin 1414mm body QFP
MD
HD D
e
1
60
b2
80
61
I2 Recommended Mount Pad
HE
Symbol A A1 A2 b c D E e HD HE L L1 x y b2 I2 MD ME
20
41
21
40
A L1
F e y
b
x
M
L Detail F
Dimension in Millimeters Min Nom Max - - 3.05 0.1 0.2 0 - - 2.8 0.25 0.3 0.4 0.13 0.15 0.2 13.8 14.0 14.2 13.8 14.0 14.2 - 0.65 - 16.5 16.8 17.1 16.5 16.8 17.1 0.4 0.6 0.8 1.4 - - - - 0.13 - - 0.1 - 0 10 - - 0.35 1.3 - - 14.6 - - - - 14.6
E
A2
100P6S-A
MMP
JEDEC Code - HD D Weight(g) 1.58 Lead Material Alloy 42
A1
c
Plastic 100pin 1420mm body QFP
MD
e
EIAJ Package Code QFP100-P-1420-0.65
1
80
b2
100
81
I2 Recommended Mount Pad Symbol
HE E
30
51
31
50
A
L1
A A1 A2 b c D E e HD HE L L1 x y b2 I2 MD ME
F
b
A1
e y
x
M
L Detail F
Dimension in Millimeters Min Nom Max 3.05 - - 0.1 0.2 0 2.8 - - 0.25 0.3 0.4 0.13 0.15 0.2 13.8 14.0 14.2 19.8 20.0 20.2 0.65 - - 16.5 16.8 17.1 22.5 22.8 23.1 0.4 0.6 0.8 1.4 - - - - 0.13 0.1 - - 0 10 - 0.35 - - 1.3 - - 14.6 - - 20.6 - -
A2
Rev.2.10 Nov. 07, 2003 page 83
of 84
c
ME
ME
M16C/62 Group (M16C/62P, M16C/62PT)
Package Dimensions
100P6Q-A
MMP
JEDEC Code - Weight(g) 0.63 Lead Material Cu Alloy
Plastic 100pin 1414mm body LQFP
MD
e
EIAJ Package Code LQFP100-P-1414-0.50
D
100 76
1
75
b2
HD
l2 Recommended Mount Pad Symbol A A1 A2 b c D E e HD HE L L1 Lp
A3
A3
25
51
26
50
A e F
A2
L1
x y b2 I2 MD ME
M
Detail F
Lp
128P6Q-A
MMP
JEDEC Code - Weight(g) - Lead Material Cu Alloy
c
b
x
y
L
Dimension in Millimeters Min Nom Max 1.7 - - 0.1 0.2 0 1.4 - - 0.13 0.18 0.28 0.105 0.125 0.175 13.9 14.0 14.1 13.9 14.0 14.1 - 0.5 - 15.8 16.0 16.2 15.8 16.0 16.2 0.3 0.5 0.7 1.0 - - 0.45 0.6 0.75 - 0.25 - - - 0.08 - - 0.1 - 0 10 - - 0.225 0.9 - - 14.4 - - - - 14.4
HE
E
A1
Plastic 128pin 1420mm body LQFP
MD
e
EIAJ Package Code LQFP128-P-1420-0.50 HD D
128 1
103 102
b2
l2 Recommended Mount Pad Symbol A A1 A2 b c D E e HD HE L L1 Lp
A3
38 39 64
65
A F
A2
L1
e
A3
x y b2 I2 MD ME
y
b
L Detail F
Lp
x
M
Dimension in Millimeters Min Nom Max 1.7 1.4 1.5 0.125 0.2 0.05 1.4 - - 0.17 0.22 0.27 0.105 0.125 0.175 13.9 14.0 14.1 19.9 20.0 20.1 0.5 - - 15.8 16.0 16.2 21.8 22.0 22.2 0.35 0.5 0.65 1.0 - - 0.45 0.6 0.75 - 0.25 - - - 0.08 0.1 - - 0 8 - 0.225 - - - 1.0 - 14.4 - - 20.4 - -
E HE
A1
Rev.2.10 Nov. 07, 2003 page 84
of 84
c
ME
ME
REVISION HISTORY
Rev. Date Page 1.10 May/28/Y03 (Continued) 2 4-5 14-19 22 23 24 30 31 30-31 32 30-32 36-39 40-41 42 47 48 47-48 49 47-49 53-56 57-58 2.00 Oct./29/Y03 2-4 6 7-9 11 12-15 17,19 18,20 30 31-32 33 34,74 36 38,55 41 41-43, 58-60 44
M16C/62 Group (M16C/62P, M16C/62PT) Data Sheet
Description Summary
Table 1.1.1 is partly revised. Table 1.1.2 and 1.1.3 is partly revised. SFR is partly revised. "Note 1" is partly revised. Table 1.5.3 is partly revised. Table 1.5.5 is partly revised. Table 1.5.6 is added. Table 1.5.9 is partly revised. Notes 1 and 2 in Table 1.5.26 is partly revised. Notes 1 in Table 1.5.27 is partly revised. Note 3 is added to "Data output hold time (refers to BCLK)" in Table 1.5.26 and 1.5.27. Note 4 is added to "th(ALE-AD)" in Table 1.5.28. Switching Characteristics is partly revised. th(WR-AD) and th(WR-DB) in Figure 1.5.5 to 1.5.8 is partly revised. th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.9 to 1.5.10 is partly revised. Note 2 is added to Table 1.5.29. Notes 1 and 2 in Table 1.5.45 is partly revised. Notes 1 in Table 1.5.46 is partly revised. Note 3 is added to "Data output hold time (refers to BCLK)" in Table 1.5.45 and 1.5.46. Note 4 is added to "th(ALE-AD)" in Table 1.5.47. Switching Characteristics is partly revised. th(WR-AD) and th(WR-DB) in Figure 1.5.15 to 1.5.18 is partly revised. th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.19 to 1.5.20 is partly revised. Since high reliability version is added, a group name is revised. M16C/62 Group (M16C/62P) AE M16C/62 Group (M16C/62P, M16C/62PT) Table 1.1 to 1.3 are revised. Note 3 is partly revised. Figure 1.2 Note5 is deleted. Table 1.4 to 1.7 Product List is partly revised. Table 1.8 and Figure 1.4 are added. Figure 1.5 to 1.9 ZP is added. Table 1.10 and 1.12 ZP is added to timer A. Table 1.11 and 1.13 VCC1 is added to VREF. Table 5.1 is revised. Table 5.2 and 5.3 are revised. Table 5.4 A-D Conversion Characteristics is revised. Table 5.5 D-A Conversion Characteristics revised. Table 5.6 to 5.7 and table 5.54 to 5.55 are revised. Table 5.11 is revised. Table 5.14 and 5.33 HLDA output deley time is deleted. Figure 5.1 is partly revised. Table 5.27 to 5.29 and table 5.46 to 48 HLDA output deley time is added. Figure 5.2 Timing Diagram (1) XIN input is added.
A-1
REVISION HISTORY
Rev. Date Page 47-48 49-50 52 53 58 61 64-65 66-67 69 70-85 8-9 23 71 72
M16C/62 Group (M16C/62P, M16C/62PT) Data Sheet
2.10 Nov./07/Y03
Description Summary Figure 5.5 to 5.6 Read timing DB --> DBi Figure 5.7 to 5.8 Write timing DB --> DBi Figure 5.10 DB --> DBi Table 5.30 is revised. Figure 5.11 is partly revised. Figure 5.12 Timing Diagram (1) XIN input is added. Figure 5.15 to 5.16 Read timing DB --> DBi Figure 5.17 to 5.18 Write timing DB --> DBi Figure 5.20 DB --> DBi Electrical Characteristics (M16C/62PT) is added. Table 1.5 to 1.7 Product List is partly revised. Note 1 is deleted. Table 3.1 is revised. Table 5.50 is revised. Table 5.51 is deleted.
A-2
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.
http://www.renesas.com
(c) 2003. Renesas Technology Corp., All rights reserved. Printed in Japan.


▲Up To Search▲   

 
Price & Availability of M16C62

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X